修士論文

対称座標法による複素信号処理回路の解析と3相信号処理用増幅器の設計

北見工業大学大学院工学研究科電気電子工学専攻
電子基礎研究室
在籍番号 0751200071
桑原 浩一

2009年2月12日
目次

第 1 章 序論 1
 1.1 背景と目的 ... 1
 1.2 本論文の構成 .. 8

第 2 章 RC ポリフェイスフィルタ 9
 2.1 RC ポリフェイスフィルタ .. 9
 2.2 90° 移相器としての誤差解析 ... 11
 2.3 対称座標法による位相誤差と振幅誤差の解析 11
 2.4 各相成分に対する RCPF の伝達関数 12
 2.4.1 正相成分 (負の系列) に対する伝達関数 15
 2.4.2 逆相成分 (正の系列) に対する伝達関数 16
 2.4.3 零相成分に対する伝達関数と無名相成分に対する伝達関数 16
 2.5 対称座標法による位相誤差と振幅誤差の解析手順 18
 2.5.1 方法 A に対する結果 ... 19
 2.5.2 方法 B に対する結果 ... 20
 2.6 フィルタとしての誤差解析 ... 25
 2.7 2 章まとめ .. 29

第 3 章 多相フィードフォワード OTA 31
(Feed-foward OTA，F/F OTA)
 3.1 全差動 F/F OTA .. 31
 3.2 多相回路用 OTA .. 34
 3.2.1 4 相用 F/F+F/B OTA .. 35
 3.3 4 相 F/F+F/B OTA の無名相成分の抑圧 37
 3.4 3 相 F/F+F/B OTA .. 37
3.4.1 零相 (同相) 利得のチューニング [17] 41
3.4.2 モンテカルロ解析における零相利得 (同相利得) のばらつき 44
3.4.3 3 相 F/F+F/B OTA を用いた Tow-Thomas 複素バイカッドフィルタ .. 48
3.5 F/F OTA の同相利得のチューニングの検討 53
3.6 F/F OTA の設計と試作 ... 56
 3.6.1 F/F OTA の設計 ... 56
 3.6.2 ダミートランジスタを考えた回路 58
 3.6.3 配置の決定 ... 58
 3.6.4 コモンセントロイド配置 59
3.7 3 章のまとめ ... 64

第4章 結論 ... 66

参考文献 ... 70

付録 A 付録 ... 72
 A.1 RCPF の測定 .. 72
 A.2 測定結果 .. 74
 A.3 RCPF の設計と試作 ... 77

付録 B 付録 ... 85
 B.1 モンテカルロ解析の回数に対する検討 85
 B.2 10000 回と 1000 回の分散比の検定 87
 B.2.1 1000 回と 1000 回の分散比の検定 88
第1章
序論

1.1 背景と目的

無線通信の歴史は、1895年にマルコニが初めて無線通信の実験を成功させたことから始まった。それから1906年にレジナルド・フェッセンデンが初めてAMラジオ放送を行い、少し後の1933年にFMラジオの放送を行なっている。ラジオ放送は今でもアナログ変調を採用しているが、2000年以降、ディジタル変調を利用したインターネットラジオや地上ディジタルラジオ放送が始めている。また移動無線通信もアナログ変調方式からディジタル変調方式に変わりデータ通信、動画などの大容量のデータを通信できるようになった。最近ではIEEEがWiMAX(Worldwide Interoperability for Microwave Access)という無線通信技術の規格を取り決め、WiMAXは最長伝送距離50km、最大伝送速度70Mbpsの規格である。今後更に高速化、大容量のデータの通信が出来るようになるだろう。

移動無線通信の代表的な通信手段である携帯電話は、今や人の生活に不可欠なツールの1つとなっている。携帯電話の内部には、電波のやり取りを行う送受信機が搭載されている。その送受信機の代表的なアーキテクチャにスーパーヘテロダイナイト方式(SH)とダイレクトコンバージョン方式(DC)があるが、一般的によく使われているのは前者の方式である。

SH方式(図1.1.1上)は、RF信号をいったんある程度低い周波数(IF:Intermediate Frequency)に変えてから信号を処理する。それゆえ原理的に必ずイメージ信号が発生する。イメージ信号は、所望波と同周波数も出てくることから位相の回転方向が区別できるフィルタで除去しなければいけない。

ハートレー受信方式を用いたDC方式(図1.1.1(下))はミクサを2系統持ってきて、そのミクサに複素信号を入力することによりイメージ信号を抑制することが出来る。

従ってSH方式とDC方式は、イメージ信号を処理する場所が異なる。SH方式は、DC方式は
も変調部分では、直交変調を行なっている。

直交変調によってイメージ信号を区別するためには 90° 移相器によって作られる信号の精度を大きく依存する。従って局部発振器は常に正確な移相器が要求される。そこで高精度な 90° 移相器として RC ポリフェーズフィルタ (RCPF)[1](図 1.1.2) に着目した。RCPF は図 1.1.1(下) のような 4 相の 90° 移相器に用いる事が出来る。この他に複素信号を生成する回路は、ブリッジ型の RC フィルタ [2, 3] や LC 定位相位分波器 [4, 5, 6] などがある。

ブリッジ型 RC フィルタは帯域を狭くすると、減衰量が増える相位誤差と振幅誤差のばらつきが大きくなる。また LC フィルタの位相誤差、振幅誤差は RCPF と同程度であるがインダクタは実装するに際し面積が大きい。そのため集積化には向かない [7]。RCPF は抵抗と容量のみで構成されるため、高精度、集積化が容易に実現できる優れた回路である。

RCPF を 90° 移相器として用いるためには、2 通りの入力方法が存在する (図 1.3)。今まで 2 通りの入力方法が存在していたにも関わらず明確な解析が行なわれておらず、使い分けの指針が得られていなかった。本稿ではまずこの RCPF を 90° 移相器として用いたときの出力の誤差を解析的に求め、2 通りの入力方法に対する使い分けの指針を明らかにする。

RCPF は複素係数フィルタとしての役割もある。複素係数フィルタとは、伝達関数の零点が通常のフィルタと異なり対称性を満たさないものである。それゆえ正の周波数と負の周波数特性が異なる。従って位相の回転方向が区別できるフィルタであり、イメージ抑制フィルタとして使用することができる。ハートレー受信方式などに用いるイメージ除去フィルタであれば RCPF を用いる。SH 方式のイメージ抑制フィルタとして SAW フィルタ (表面弾性波フィルタ) や誘電体フィルタがあるが比較的高価であり、集積化が困難なため外付けにしなければならず、ワンチップ化に向かない。

RCPF をイメージ抑制フィルタとして使う場合、入力として 4 相信号を用いるが、入力する 4 相信号の精度は RCPF の特性に大きく影響する。RCPF の特性の劣化は 2 つの要因が考えられる。1 つは RCPF に入力される 4 相信号の対称性が崩れ非対称になった場合。もう 1 つは RCPF の素子値がばらついた場合である。今までに 4 相信号が非対称になった場合、RCPF の出力にどの程度影響を与えるのかは、よく検討されていなかった。従って、非対称な入力を各対称成分に分解して不要な対称成分を入力した解析とシミュレーションにより検討する。

SH 方式や DC 方式において変調部分はディジタル変調を採用している。ディジタル直交変調における 4 値直交シフトキーイング (QPSK) や π/4-QPSK などの信号点は I-Q 平面上に信号点が 4 点あり、4 相信号にて信号点を特定している。しかし最近は対称 3 相交流で信号を処理しようという試みがある [8, 9, 10]。I-Q 平面上の信号点は最低 3 相えば十分である。4 相から 3 相信号に変更するということは、4 本ある信号ラインを 3 本に減らすことになり、回路規模を最大で 3/4 にすることが出来る。
図 1.1.1 スーパーヘテロダイナミック方式（上）とダイレクトコンバージョン方式（下）における受信機のアーキテクチャ

図 1.1.2 RC ポリフェーズフィルタの回路図
図 1.1.3 90° 移相器に用いるための入力方法 A（左；回路 1）と入力方法 B（右；回路 2）

図 1.1.4 4 相システムから 3 相システムに変換したときの受信機のアーキテクチャ
また４本の信号線から３本の信号線になるので消費電流も最大で３/４の減少が見込める。以上の利点から４相交流信号から３相交流信号に変更することは意味があると考えられる。図1.1.4はDC方式で４相システムから３相システムに変換した際の受信機のアーキテクチャの例である。ミクサから信号ラインが３本になり、ミクサ以降に接続されている回路は、全て３相システムで動作させる回路である。

そういった背景から対称３相交流信号の処理に適用する増幅器について検討し、我々の研究室から提案されている２相用OTAを３相交流信号を処理できる回路に拡張した。また同時に４相交流信号を処理できる回路にも拡張し、３相と４相交流で扱う増幅器の違いを明らかにする。

増幅器の低電圧化　携帯電話の内部には多くの集積回路（IC）が搭載されている。最近は１つのチップに複数の機能を持たせたシステムオンチップ（SoC）が主流であり、１つの機能しか持たない複数のICが搭載される事は少なくない。SoCはアナログ回路とデジタル回路が混載されている。アナログ回路とデジタル回路が混載しているのは、部品数の削減と消費電流の削減が期待出来るからである。しかしプロセスの微細化に伴い、さまざまな問題が生まれアナログ回路における増幅器の事情が変化してきた。

プロセスの微細化に伴い、トランジスタの耐圧が低下してきている。トランジスタの耐圧が低下すると電源電圧を下げなくてはいけなくなり、アナログ回路に重要なダイナミックレンジの確保やアナログ信号の精度が取れなくなってしまう問題が出てくる。一昔前までは電源電圧が2.5Vで動作していた増幅器も今や1Vで動作させないといけない時代がもうそこまで迫っている[11]。

世界最大の半導体製造販売企業ファウンドリであるTSMC(Taiwan Semiconductor Manufacturing Company)のCMOSプロセスは現在32nmまで微細化が進められているのに対してアナログ回路の実用化されているプロセスは130nmに留まる。そのためトランジスタの耐圧がデジタルとアナログで異なってしまい、トランジスタを動作させる電源電圧も異なる。2系統の電源電圧を用いると、異なる電圧間のインターフェースが必要など設計時に考慮すべき事項が増えてしまう。

この問題に対して2通りの解決策が生まれる。1つはアナログ回路がデジタル回路に電源電圧を合わせ1チップで作る。もう１つはアナログ回路とデジタル回路を別にして2チップで作る。後者の考え方は、もともと1つのチップに載せられるものが2つのチップになるので、その分コストが増える。出来るだけアナログ回路とデジタル回路は混載させておいたほうがコストが低く抑えられるので、我々の研究室ではアナログ回路の電源電圧を下げても動作する回路を提案してきた[12]。
ディジタル回路の基本単位である CMOS インパータスイッチは、PMOS と NMOS の縦積み 2 段で構成されている。MOS が動作する最低の電圧は、プロセスによって多少異なるが、V_{DS}（ドレーン・ソース間電圧）に 0.3 V 程度の電圧を必要とする。縦積み 2 段構成の場合、全体の電源電圧は 1 V であれば十分スイッチとして働く。

しかしアナログ回路の増幅器としての従来の基本構成である差動増幅回路は MOS を 3 段縦積みにするため（図 1.1.5）、V_{DS} に 0.3 V 必要であればそれだけで 0.9 V となり電源電圧を 1 V とすると、出力での電圧の振れ幅が 0.1 V となり増幅器として有効に働かない。つまり従来の構成で差動増幅器を電源電圧 1 V で動作させることは難しい。

我々の研究室はアナログ回路の電源電圧をディジタル回路の電源電圧と合わせるため、差動増幅回路を使うのでなく、CMOS インパータをアンプとして用いている。スイッチとして使われている CMOS インパータと構成は同じであるが、図 1.1.6 のように使用する領域が異なる。

CMOS インパータは電源電圧が 1 V で動作させることが出来るので、差動対を用いた増幅器より低電圧で動作させることが出来ると、これによりアナログ回路とディジタル回路を同じ電源電圧で動作させることが出来る。

しかし CMOS インパータは基本的に 1 入力 1 出力であるので、大きな振幅、大きな同相除去比を取りたいのなら差動構成にする必要がある。CMOS インパータを用いた増幅器を差動増幅器のように 2 入力 2 出力にするには工夫が必要である。我々の研究室は CMOS インパータを用いた全差動増幅器を提案している [12, 13]。CMOS インパータを 2 入力 2 出力にする
図 1.1.6 CMOS インバータと CMOS インバータの直流入出力特性

ためには CMOS インバータを 2 系統持ってくると、2 入力 2 出力の増幅器が実現できる（図 1.1.7）。

図 1.1.7 CMOS インバータ（左）と全差動フィードフォワード/フィードバック OTA（右）[12], [13]
1.2 本論文の構成

第2章でRCPFを説明し、差動信号から4相信号を生成し、3相信号に変換する考え方のもと、RCPFを90°移相器に使用する事を説明する。また2通りの入力方法に対する出力の誤差を対称座標法を用いて解析する。得られた結果から2通りの入力方法に対する使い分けを述べる。

RCPFをイメージ除去ミクサとして使用する場合を説明し、一定の基準を定めて非対称な4相信号をRCPFに入力することでRCPFの出力にどのように影響があるかシミュレーションより求めて検討した結果を述べる。

第3章では、我々の研究室が提案したフィードフォワードOTA(F/F OTA)を多相化し、3相信号処理で使われる増幅器を検討したことを説明する。同様に4相信号処理に使えるアンプも検討し、3相アンプと4相アンプの違いを述べる。

提案した3相処理用増幅器のMOSは実際に製造するとばらつきで増幅器の性能が変化する事が考えられる。従ってMOSをばらつかせたときに出力の利得にどのような影響があるかをモンテカルロシミュレーションにより検討した結果を述べる。

また全差動F/F OTAの同相利得のチューニングの検討した結果を述べる。3相アンプのモンテカルロシミュレーションの結果から、インパータのばらつきによる同相利得をMOSの配置から改善しようと試みるため全差動F/F OTAを設計し、ICで試作する。このICは2009年3月中ごろに納入される予定であり、まだ測定は行われていない。

第4章では、本研究のまとめを書き、今後の課題を述べる。
第2章

RC ポリフェイズフィルタ

2.1 RC ポリフェイズフィルタ

RC ポリフェーズフィルタ (RCPF) を説明する前に、RCPF と構成が同じである RC/CR 回路 [14] を説明する。構成は R と C を並列につなぎローパスフィルタとハイパスフィルタの性質を利用したものである (図 2.1.1(左))。図 2.1.1 より、利得は $\omega = 1/RC$ でのみ -3 dB となり、出力の位相差が常に 90° となる。

RC/CR 回路はハートレー型受信機あるいはウィーバー型受信機に広く用いられている 90°
移相器である。しかし図 1.1.1(下)のような 4 相信号を用いる場合は、RC/CR 回路を用いる事ができない。RCPF ならば 90° 位相差がある信号が 4 本あるので、4 相信号処理に用いる事が出来る。しかも RCPF は多段構成することで容易に広帯域化が可能で、しかも高精度が実現できる [7]。

ここで RCPF の説明をする。RCPF は正負の周波数で周波数特性が違う特徴を持っている。これにより、正の周波数と負の周波数を使い分けて信号処理に用いることができる事を意味する。正の周波数とは、相順が反時計回りに回っている成分であると定める。(4 本の電圧の関係が $V, jV, -V, -jV$ の順で回転している。)

負の周波数とは、相順が時計回りに回っている成分であると定める。(4 本の電圧の関係が $V, jV, -V, -jV$ の順で回転している。) 正の周波数と負の周波数は、ちょっと位相の回転方向が逆の関係にある (詳しくは 2.2 節で述べる)。

RCPF の正の周波数と負の周波数応答が異なることを説明する。RCPF の負の周波数が異なるのは零点が関係している。RCPF の伝達関数は分子の根（零点）が実数軸多項式になっておらず、複素数の多項式になっている。なお RCPF の伝達関数については、後に紹介する。従って、図 2.1.2 のように RCPF の零点を s 平面上にならべてみると左右対称に配置されない。これが負の周波数特性と正の周波数特性が異なる原因である。このような正負の周波数で特性が非対称なフィルタは、通常の実数フィルタにおいて実現ができない [14]。

図 2.1.2 RCPF の s 平面における零点と極の配置 (3 段 RCPF)
2.2 90° 移相器としての误差解析

背景でも述べたように，従来の対称 4 相信号から対称 3 相信号での信号処理の提案がされている．我々の研究室では対称 3 相信号発生回路の検討を行った．その検討が行なわれる以前に我々の研究室では過去に 3 相 RCPF なるものを構成し，解析を行なった．しかし通過域の減衰量が大きすぎるため信号経路に使用することができない結論を得た [15]．

2 相信号 (= 差動信号) から通常の 4 相 RCPF によって減衰少なく 4 相信号を作り，それを補間して対称 3 相信号を発生させる (図 2.2.1) [15]．

RCPF に 2 相信号 (差動信号) を入力して 4 相信号を得るためには，図 1.3 のように 2 通りの入力方法がある．しかし入力方法による出力の誤差，それらの使い分けの指針は得られていない．まず入力方法による出力の誤差の違いを検討するために 2 通りの入力方法における位相誤差と振幅誤差の解析を行い，シミュレーションで確かめる．

![RCPF for 90 degree phaseshifter](image)

図 2.2.1 2 相信号から 4 相信号へ変換する考え方

2.3 対称座標法による位相誤差と振幅誤差の解析

対称座標法 [16] は電力伝送の分野でよく使われている手法である．3 相交流の対称座標法による分解はよく知られているが，対称 4 相信号に対してはあまり知られていない．非対称な
4相交流信号 V_a, V_b, V_c, V_d は、対称成分 V_0, V_1, V_2, V_3 に分解すると次のようになる。

$$
\begin{bmatrix}
V_0 \\
V_1 \\
V_2 \\
V_3
\end{bmatrix} = \frac{1}{4}
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{bmatrix}
\begin{bmatrix}
V_a \\
V_b \\
V_c \\
V_d
\end{bmatrix}
$$

(2.3.1)

ここで、対称成分 V_0 は零相成分であり、V_1 は対称4相の正相成分、V_2 は特定の名前がない（本論分では無名相成分と呼ぶ事にする）、V_3 は対称4相の逆相成分である。

図 2.3.1 対称座標法による分解（フェーザ表記）

図 2.3.1 に非対称4相交流の対称成分の分解例を示した。フェーザで表される各対称成分は一定の角周波数 ω で反時計回りに回転している。

対称座標法によって分解された各成分の電圧は図 2.3.2 のように重ね合わせて表現できる。零相成分（Zero-sequence）と呼ばれる成分は、2相信号における同相、3相信号と4相信号における零相にあたるものであり、4本ある信号が同振幅、同位相で回転している。無名相成分（No-name sequence）と呼ばれる成分は、2組の差動信号が回転している。逆相成分（Negative sequence）は相順が反時計回りに回る成分である。正相成分（Positive sequence）は相順が時計回りに回る成分である。

実際に誤差の計算をする前に RCPF の伝達関数を求めておく必要がある。次節では RCPF を直接計算して F パラメータで伝達関数を表す。

2.4 各相成分に対する RCPF の伝達関数

RCPF の位相誤差と振幅誤差を求めるために、対称座標法を用いて各対称成分に分解して解析する。従って RCPF の各相成分の伝達関数を前もって求める必要がある。各相成分の伝
図 2.3.2 対称座標法による分解（電圧源表記）

達関数を求める。まず RCPF の単位回路を考える（図 2.4.1）。図 2.4.1 の回路の入力として正相、逆相、無名相、零相を示している。通常 RCPF の構成素子として、R と C を用いるので $Y_1 = 1/R, Y_2 = sC$ となる。逆相成分（正の系列）は、No.1 から No.4 にそれぞれ $V_1, -jV_1, -V_1, jV_1$ の順に入力した場合とし、正相成分（負の系列）は、No.1 から No.4 にそれぞれ $V_1, jV_1, -V_1, -jV_1$ の順に入力した場合とする。同様に無名相成分は $V_1, -V_1, V_1, -V_1$ の順に入力し、零相は V_1, V_1, V_1, V_1 と入力した場合と約束する。
図 2.4.1 RCPF の単位回路と正相, 逆相, 無名相, 零相の入力系列

図 2.4.2 RCPF の負の系列 1 相分の回路 (左) と正の系列 1 相分の回路 (右)

図 2.4.3 RCPF の零相成分に対する 1 相分の回路 (左) と無名相成分に対する 1 相分の回路 (右)
2.4.1 正相成分 (負の系列) に対する伝達関数

図 2.4.2(左) から回路方程式を立てると以下のようなになる。

\[-jV_1 = -jI_x / Y_2 + V_2 \quad \text{(2.4.1)}\]
\[V_1 = (I_1 - I_x) / Y_2 + V_2 \quad \text{(2.4.2)}\]
\[I_2 = -I_x + I_1 - jI_x \quad \text{(2.4.3)}\]

上記 3 本の連立方程式から I_x を消去し，F 行列の形に書き直すと,

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} = \begin{bmatrix}
\frac{V_2}{Y_1 - jI_x} & \frac{1}{Y_1 - jI_x} \\
\frac{1}{Y_1 - jI_x} & \frac{1}{Y_1 - jI_x}
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

\[
= \frac{1}{Y_1 - jI_x} \begin{bmatrix}
Y_1 + Y_2 & 1 \\
2Y_1 & Y_1 + Y_2
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

\[
= \frac{1}{1 - jsCR} \begin{bmatrix}
1 + sCR & R \\
2sC & 1 + sCR
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\quad \text{(2.4.4)}
\]

を得る．これが単位 RCPF の負の系列 (正相) に対する 1 相分の F 行列である．

RCPF の出力は開放電圧を見るので式 (2.4.4) の F 行列の (1 , 1) 要素の逆数を取れば RCPF の開放電圧利得 V_2/V_1 を得ることが出来る．1 段の F 行列が求まれば継続接続 n 段の場合でも，F 行列の積 ((1 , 1) 要素) で簡単に求めることが出来る．

継続接続 n 段の RCPF の電圧伝達関数は,

\[
\frac{V_2}{V_1} = \frac{(1 - jsC_1 R_1)(1 - jsC_2 R_2)...(1 - jsC_n R_n)}{(1 + sC_1 R_1)(1 + sC_2 R_2)...(1 + sC_n R_n)} \quad \text{(2.4.5)}
\]

となる．式 (2.4.5) の分子の第 k 段目の時定数 $C_k R_k$ を $1 / z_k$ で表すことになると $-jz_k$ が k 段目の零点を表すことになる．また式 (2.4.5) の分母の第 k 段目の時定数 $C_k R_k$ を $1 / p_k$ で表すことによれば $-p_k$ が k 段目の極を表すことになる．従って負の系列に対する電圧伝達関数 $H_-(s)$ は次のように表せる：

\[
H_-(s) = \frac{V_2}{V_1} = \frac{(1 - js/z_1)(1 - js/z_2)...(1 - js/z_n)}{(1 + s/p_1)(1 + s/p_1)...(1 + s/p_1)} \quad \text{(2.4.6)}
\]

ここで零点と極のそれぞれの関係は，$z_1, z_2, \ldots, z_n > 0$, $p_1, p_2, \ldots, p_n > 0$ とする．結局，式 (2.4.6) を整理すると次のように表せる：

\[
H_-(s) = (-j)^n p_1 p_2 \ldots p_n \frac{(s + jz_1)(s + jz_2)...(s + jz_n)}{z_1 z_2 ... z_n (s + p_1)(s + p_2)...(s + p_n)} \quad \text{(2.4.7)}
\]

式 (2.4.6) より零点は負の実軸上に並んでいることがわかる．また極は負の実軸上に並ぶことがわかる．
2.4.2 逆相成分 (正の系列) に対する伝達関数

負の系列の時と同様に求める．図 2.4.2(右) を参照し，F 行列の形で表すと次のようになる:

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} =
\begin{bmatrix}
\frac{Y_1 + Y_2}{Y_1 + jY_2} & \frac{1}{Y_1 + jY_2} \\
\frac{1}{Y_1 + jY_2} & \frac{Y_1 + Y_2}{Y_1 + jY_2}
\end{bmatrix}
\begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

\[
= \frac{1}{Y_1 + jY_2}
\begin{bmatrix}
Y_1 + Y_2 & 1 \\
2Y_1Y_2 & Y_1 + Y_2
\end{bmatrix}
\begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

\[
= \frac{1}{1 + jsCR}
\begin{bmatrix}
1 & R \\
2sC & 1 + sCR
\end{bmatrix}
\begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

(2.4.8)

負の系列と同様に n 段継続接続した場合の開放電圧伝達関数 \(V_2/V_1 \) は,

\[
\frac{V_2}{V_1} = \frac{(1 + jsC_1R_1)(1 + jsC_2R_2)\ldots(1 + jsC_kR_k)}{(1 + sC_1R_1)(1 + sC_2R_2)\ldots(1 + sC_kR_k)}
\]

(2.4.9)

であり，また正の系列に対する電圧伝達関数 \(H_+(s) \) は，

\[
H_+(s) \equiv \frac{V_2}{V_1} = (j)^n \frac{p_1p_2\ldots p_n (s - jz_1)(s - jz_2)\ldots(s - jz_n)}{z_1z_2\ldots z_n (s + p_1)(s + p_2)\ldots(s + p_n)}
\]

(2.4.10)

となる．式 (2.4.10) の伝達関数の極は負の実軸上にある，零点は正の虚軸上にあることがわかる．従って正の系列と負の系列に対する電圧伝達関数は互いに零点の符号が反転した関係にあることがわかる．

2.4.3 零相成分に対する伝達関数と無名相成分に対する伝達関数

零相と無名相成分に対する伝達関数も図 2.4.3 を参照し，求めることができる．図 2.4.3(左) より，零相成分出力時の回路方程式は次のようになる:

\[
-jV_1 = -jI_x/Y_2 + V_2
\]

(2.4.11)

\[
V_1 = (I_1 - I_x)/Y_2 + V_2
\]

(2.4.12)

\[
I_1 = I_2
\]

(2.4.13)

F 行列の形に直すと，

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} =
\begin{bmatrix}
1 & \frac{1}{Y_1 + jY_2} \\
0 & \frac{1}{Y_1 + jY_2}
\end{bmatrix}
\begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

(2.4.14)

となる．従って零相成分出力時の電圧伝達関数 \(H_{zero}(s) \) および開放電圧伝達関数 \(V_2/V_1 \) は，

\[
H_{zero}(s) = \frac{V_2}{V_1} = 1
\]

(2.4.15)
となる。
次に無名相成分を入力したときの開放電圧伝達関数も同様に F 行列の形にすると,

$$
\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \frac{1}{Y_1 - Y_2} \begin{bmatrix} Y_1 + Y_2 \\ Y_1 Y_2 + Y_1 + Y_2 \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}
$$

(2.4.16)

なる。従って無名相成分入力時の n 段継続開断開放電圧伝達関数 V_2/V_1 は,

$$
\frac{V_2}{V_1} = \frac{1 - sC_1 R_1}{1 + sC_1 R_1} \frac{1 - sC_2 R_2}{1 + sC_2 R_2} \cdots \frac{1 - sC_k R_k}{1 + sC_k R_k}
$$

(2.4.17)

式 (2.4.17) の零点の時定数を $C_k R_k = 1/z_k$ 極の時定数を $C_k R_k = 1/p_k$ としたときの $H_{no-name}(s)$ は,

$$
H_{no-name}(s) = \frac{p_1 p_2 \cdots p_k (z_1 - s)(z_2 - s) \cdots (z_k - s)}{z_1 z_2 \cdots z_k (s + p_1)(s + p_2) \cdots (s + p_k)}
$$

(2.4.18)

となる。以下に正相、逆相、無名相、零相に対する電圧伝達関数をまとめる。

$$
H_-(s) = (-j)^k \frac{p_1 p_2 \cdots p_k (s + jz_1)(s + jz_2) \cdots (s + jz_k)}{z_1 z_2 \cdots z_k (s + p_1)(s + p_2) \cdots (s + p_k)}
$$

(2.4.19)

$$
H_+(s) = (j)^k \frac{p_1 p_2 \cdots p_k (s - jz_1)(s - jz_2) \cdots (s - jz_k)}{z_1 z_2 \cdots z_k (s + p_1)(s + p_2) \cdots (s + p_k)}
$$

(2.4.20)

$$
H_{no-name}(s) = \frac{p_1 p_2 \cdots p_k (z_1 - s)(z_2 - s) \cdots (z_k - s)}{z_1 z_2 \cdots z_k (p_1 + s)(p_2 + s) \cdots (p_k + s)}
$$

(2.4.21)

$$
H_{zero}(s) = 1
$$

(2.4.22)

特に、よく用いられる等リプル設計における RCPF の零点と極は対角周波数軸上で中心周波数に関して左右対称に配置されるので $z_k z_{n-k} = 1$, $p_k p_{n-k} = 1$ ($k = 1, \ldots, n$) となり,

$p_1 \cdots p_k/z_1 \cdots z_k = 1$ となる。$s = j\omega$ とし、書き換えると,

$$
H_-(j\omega) = \frac{(\omega + z_1)(\omega + z_2) \cdots (\omega + z_k)}{(j\omega + p_1)(j\omega + p_2) \cdots (j\omega + p_k)}
$$

(2.4.23)

$$
H_+(j\omega) = (-1)^k \frac{(\omega - z_1)(\omega - z_2) \cdots (\omega - z_k)}{(j\omega + p_1)(j\omega + p_2) \cdots (j\omega + p_k)}
$$

(2.4.24)

$$
H_{no-name}(j\omega) = \frac{(z_1 - j\omega)(z_2 - j\omega) \cdots (z_k - j\omega)}{(p_1 + j\omega)(p_2 + j\omega) \cdots (p_k + j\omega)}
$$

(2.4.25)

$$
H_{zero}(j\omega) = 1
$$

(2.4.26)

となる。式 (2.4.23) と式 (2.4.24) の正相と逆相に対する電圧伝達関数の零点配置は互いに符号が逆になる。無名相成分の電圧伝達関数である式 (2.4.25) は零点が正の実軸、極が負の実軸上にある。無名相成分に対する伝達関数の絶対値がほとんど出力で出てくる。零相においても入力したもののがそのまま出力で出てくる。
2.5 対称座標法による位相誤差と振幅誤差の解析手順

RCPF は 4 相交流信号を入力するが、RCPF を 90° 移相器として用いる場合、図 1.1.3 のように 2 通りの方法で差動信号が入力できる。これは非対称な 4 相交流信号が入力されたとき等価であるので、対称座標法によって図 2.2.1、図 2.3.1 のように各対称成分に分解することが出来る。

2 通りの入力方法の違いは、正相成分に対する伝達関数 $H_+ (j\omega)$ と逆相成分に対する伝達関数 $H_- (j\omega)$ を用いることで表現できる。

RCPF の 4 相出力は重ね合わせで表現できることから以下のようになる:

\[V_{o1} = a_0 H_{zero} (j\omega) + a_1 H_+ (j\omega) + a_2 H_{no-name} (j\omega) + a_3 H_- (j\omega) \]
\[V_{o2} = j[a_0 H_{zero} (j\omega) - a_1 H_+ (j\omega) - a_2 H_{no-name} (j\omega) + a_3 H_- (j\omega)] \]
\[V_{o3} = -[a_0 H_{zero} (j\omega) + a_1 H_+ (j\omega) + a_2 H_{no-name} (j\omega) + a_3 H_- (j\omega)] \]
\[V_{o4} = -j[a_0 H_{zero} (j\omega) - a_1 H_+ (j\omega) - a_2 H_{no-name} (j\omega) + a_3 H_- (j\omega)] \]
出力の位相差を求める場合は、\(\arg(V_{o2}/V_{o1}) \) を計算すればよく、出力の振幅比を求める場合は、
\[|V_{o2}/V_{o1}| \] とすればよい。

2.5.1 方法 A に対する結果

方法 A に対する \(V_{o2} \) と \(V_{o1} \) の比は次のように表せる:

\[
\frac{V_{o2}}{V_{o1}} = \frac{j[-H_+(j\omega) + H_-(j\omega)]}{H_+(j\omega) + H_-(j\omega)}
\]

\[
= -j\left(\frac{(-1)^k(\omega - z_1)\ldots(\omega - z_k) - (\omega + z_1)\ldots(\omega + z_k)}{(-1)^k(\omega - z_1)\ldots(\omega - z_k) + (\omega + z_1)\ldots(\omega + z_k)}\right)
\]

\[(2.5.13) \]

\(V_{o2}/V_{o1} \) の挙動を調べるため、\(-j\) を除いた有理数部分を \(f(\omega) \) とおくと、

\[
f(\omega) = \pm(\omega - z_1)\ldots(\omega - z_k) - (\omega + z_1)\ldots(\omega + z_k)
\]

\[(2.5.14) \]

となる。上式における複雑は、\(k \) が奇数ならプラス、\(k \) が奇数ならマイナスをとる。このとき \(g(\omega) \) は、

\[
g(\omega) = \frac{(\omega - z_1)\ldots(\omega - z_k)}{(\omega + z_1)\ldots(\omega + z_k)}
\]

\[(2.5.15) \]

となる。このとき \(g(0) = (-1)^k \) であり、\(\omega > 0 \) に対して \(|g(\omega)| < 1 \) が言える。なぜなら \(\omega > 0 \)
かつ \(z_k > 0 \) が言えるので、\(|(\omega - z_k)/(\omega + z_k)| < 1 \) が成り立つからである。

また \(\omega \) が零点 \(z_k \) を通するときで、\(g(\omega) \) の符号が逆転する。従って、\(z_1\sim z_k \) の通過域における \(g(\omega) \) の値は 0 を中心に振動的な振る舞いをする。

\(k \) が奇数のとき、\(\omega < 0 \) で \(|g(\omega)| < 1 \) であるから、

\[
f(\omega) = \frac{g(\omega) - 1}{g(\omega) + 1} > 0
\]

\[(2.5.16) \]
\(\omega < 0 \) のとき、\(\omega' = -\omega > 0 \) と置き換えると、
\[
| g(\omega') | = \left| \frac{(\omega' - z_1) \ldots (\omega' - z_k)}{(\omega' + z_1) \ldots (\omega' + z_k)} \right| > 1 \tag{2.5.17}
\]
となり、このとき \(f(\omega) < 0 \) となるため \(k \) が奇数なら \(f(\omega) \) と \(\omega \) は同じ符号を取る．

\(k \) が奇数なら、偶数の時と同様の議論により
\[
f(\omega) = \frac{-g(\omega) - 1}{-g(\omega) + 1} < 0 \tag{2.5.18}
\]
となる．\(\omega < 0 \) のとき、\(\omega' = -\omega > 0 \) と置き換えると、
\[
| g(\omega') | = \left| \frac{(-\omega' - z_1) \ldots (-\omega' - z_k)}{(-\omega' + z_1) \ldots (-\omega' + z_k)} \right| < 1 \tag{2.5.19}
\]
であるので、\(f(\omega) > 0 \) となるので \(k \) が奇数の場合 \(f(\omega) \) と \(\omega \) は逆の符号を取る．

以上より位相差 \(\phi_1 \) は、
\[
\phi_1 = \arg \left(\frac{V_{o2}}{V_{o1}} \right) = \arg [\text{sign}(\omega)]
\]
\[
= \begin{cases}
\frac{\pi}{2} \text{sign}(\omega) & n \text{ が偶数のとき} \\
-\frac{\pi}{2} \text{sign}(\omega) & n \text{ が奇数のとき}
\end{cases} \tag{2.5.20}
\]
となる．

以上より \(V_{o1} \) を基準にした \(V_{o2} \) の位相は厳密に 90° 異なる理想的な 90° 移相器となっていることがわかる．

次に方法 A における \(V_{o1} \) を基準にした \(V_{o2} \) の振幅比 \(G_1 \) は、
\[
G_1 = \left| \frac{V_{o2}}{V_{o1}} \right| = \frac{\pm g(\omega) - 1}{\pm g(\omega) + 1} \tag{2.5.21}
\]
となる．\(g(\omega) \) が通過域付近で 0 を中心に振動することから、出力振幅比 \(G_1 \) は通過域において 1 のまわりで振動することがわかる．なお等リップル設計下における RCPF では、通過域において \(G_1 \) も等リップル状になることが数値計算から明らかになった．

2.5.2 方法 B に対する結果

方法 B に対する \(V_{o2} \) と \(V_{o1} \) の比は次のように表せる：
\[
\frac{V_{o2}}{V_{o1}} = \frac{j[-\frac{1+i}{2} H_+(j\omega) + \frac{1-i}{2} H_-(j\omega)]}{\frac{1+i}{2} H_+(j\omega) + \frac{1-i}{2} H_-(j\omega)}
\]
\[
= \frac{-H_+(j\omega) + H_-(j\omega) + j(H_+(j\omega) - H_-(j\omega))}{H_+(j\omega) + H_-(j\omega) + j(H_+(j\omega) - H_-(j\omega))} \tag{2.5.22}
\]
方法 B の V_{o2} と V_{o1} の振幅比 G_2 は、

$$G_2 = \left| \frac{V_{o2}}{V_{o1}} \right| = \left| \frac{-(H_+(j\omega) + H_-(j\omega)) + j(H_+(j\omega) - H_-(j\omega))}{(H_+(j\omega) + H_-(j\omega)) + j(H_+(j\omega) - H_-(j\omega))} \right| = 1 \quad (2.5.23)$$

となり、方法 B の振幅比 G_2 は全ての周波数で厳密に 1 となる。

次に、位相差 ϕ_2 は、

$$\phi_2 = \arg\left(\frac{-x + jy}{x + jy}\right) = \pi - 2\tan^{-1}\left(\frac{y}{x}\right) \quad (2.5.24)$$

ただし、x と y は、

$$x = (-1)^k(\omega - z_1)\ldots(\omega - z_k) - ((\omega + z_1)\ldots(\omega + z_k)) \quad (2.5.25)$$
$$y = (-1)^k(\omega - z_1)\ldots(\omega - z_k) + (\omega + z_1)\ldots(\omega + z_k) \quad (2.5.26)$$

となる。ここで y/x を計算すると、

$$\frac{y}{x} = \frac{(-1)^k(\omega - z_1)\ldots(\omega - z_k) + (\omega + z_1)\ldots(\omega + z_k)}{(-1)^k(\omega - z_1)\ldots(\omega - z_k) - ((\omega + z_1)\ldots(\omega + z_k))} = \frac{\pm g(\omega) + 1}{\pm g(\omega) - 1} \quad (2.5.27)$$

となり、通過帯域近で $y/x \approx 1$ となるので $\phi_2 \approx 90^\circ$ となることがわかる。すなわち方法 B の位相差は、方法 A と違い厳密に 90° となりならず、90° あたりで変化する。

6 段 RCPF の方法 A の位相差がほぼ 0 になる事と振幅比が波状になる事をシミュレーションにより確かめる。同様に方法 B の振幅比がほぼ 1 となる事と位相差が波状になることをシミュレーションにより確かめる。なおシミュレーションに用いた RCPF は等リプル設計である。
図 2.5.2 方法 A の振幅比の誤差

図 2.5.3 方法 A の位相差の誤差
図 2.5.4 方法 B の位相差の誤差

図 2.5.5 方法 B の振幅比の誤差
図 2.5.2 と図 2.5.4 より等リプル設計時の誤差は，等リプル状に変化することがシミュレーションからも確かめられた．また図 2.5.3 より方法 A の位相誤差はほぼ 0 となる．図 2.5.5 より方法 B の振幅比はほぼ 1 とすることがわかった．
2.6 フィルタとしての誤差解析

RCPF を複素信号処理に使用する場合、正相成分と逆相成分しか利用しないので、これらだけがあればよく、残りの無名相成分と零相成分は不要な成分となる。無名相成分と零相成分は 4 相信号が非対称になった時に発生する成分であるが、完全な対称 4 相信号は実際に作ることが出来ないことから、無名相成分と零相成分はわずかでも、必ず存在している成分であることを認識しなくてはいけない。現状では零相成分と無名相成分が重要な誤差ファクターになるかどうかを論じられていないので、零相成分と無名相成分が RCPF に及ぼす影響を調べておく必要がある。

無名相成分と零相成分が RCPF に入力された場合における影響を調べるためには、図 2.3.2 のように電圧源の重ね合わせで入力すればよい。そこで RCPF のイメージ抑圧比 (IRR:Image Rejection Ratio) を見て、IRR がどれだけ変化するかで判断する。IRR がわかられば、およそその振幅誤差と位相誤差が推測できる [14]. IRR は,

\[IRR = \text{正の周波数 (逆相成分) に対する利得 [dB]} \]
\[- \text{負の周波数 (正相成分) に対する利得 [dB]} \]

で定義されるが、実際には図 2.6.1 のように、入力として逆相・正相成分に対して 1% の無名相成分を加えて評価した。これはアナログ回路の信号処理の精度が 1% 程度になることを考慮して決めた。なお図 2.6.1 の無名相成分は、いくつかある無名相成分の入力方法のうちの 1 つである。無名相成分は 2 つの差動信号間に差動で入力されるもの全てが無名相成分となる。4 つある経路のうち 2 つをプラスに選び、マイナスを 2 つ選ぶ方法は全部で 6 通りある。しかし入力をひねれば全ての入力を表現できるので、本節ではその中の 1 つだけに関する結果を示す。

ある段数の RCPF において IRR は帯域を変化させることで、イメージ量の高低を決めることが出来る。比較のために、帯域域 100 と帯域域 1.5 で設計したものを用いた。

帯域域 100 における場合のシミュレーション結果 (図 2.6.2) から、1% の無名相成分を入力すると IRR は 15.71 dB から 15.55 dB に低下するが変化量は少ない。

帯域域 1.5 における場合のシミュレーション結果 (図 2.6.3) から、1% の無名相成分を入力すると IRR は -71 dB から -52 dB となり、約 20 dB 近く悪くなっていることがわかる。

この結果から無名相成分における RCPF の IRR は、高いイメージリジェクションを持つ RCPF において大きな影響があることがわかる。従って高いイメージリジェクション処理では、無名相成分が無視できない。

次に、解析的に RCPF に無名相成分が入力されたときの IRR を求めてみる。先に述べたよ
図 2.6.1 RCPF の IRR への影響を見るために用いた入力構成図

図 2.6.2 3 段 RCPF, 比帯域 100, 1% の無名相成分入力時の IRR
うに，RCPF に入力された対称成分は重ね合わせで表現できる．まず 1% の無名相が入力されたときの，対称成分は $a_2 = 0.01$ となる．また正相と逆相が入力された時はそれぞれ $a_1 = 1$, $a_3 = 1$ となる．従って，正相と無名相成分が入力された時の RCPF の出力の 1 つは，

$$V_{o1} = a_1 H_-(j\omega) + a_2 H_{no-name}(j\omega) \quad (2.6.2)$$

となる．式 (2.6.2) に，$H_-(j\omega)$ と $H_{no-name}(j\omega)$ を代入すると，

$$V_{o1} = \frac{(\omega + z_1)(\omega + z_2)\ldots(\omega + z_k)}{(j\omega + p_1)(j\omega + p_2)\ldots(j\omega + p_k)} + 0.01 \frac{(z_1 - j\omega)(z_2 - j\omega)\ldots(z_k - j\omega)}{(p_1 + j\omega)(p_2 + j\omega)\ldots(p_k + j\omega)} \quad (2.6.3)$$

となる．式 (2.6.3) は，正相と無名相を入力したときの出力である．式 (2.6.3) より RCPF の負の周波数に対する伝達関数に無名相入力に対する伝達関数がそのまま足される形になる．しかもここで $(z_k - j\omega)/(p_k - j\omega) \approx 1$ であるから結局無名相成分に対する伝達関数は，入力した分がほぼそのまま出力されることを表している．

従って無名相成分に対する周波数特性はほぼ一定になる．そこで，正相入力に対する伝達関数の極と零点，無名相入力に対する伝達関数極の極と零点を s 平面で示す．

無名相成分に対する極と零点の配置をみると（図 2.6.4(b)），ω を動かしても周波数特性がほぼ一定であることが言える．
図 2.6.4 正相入力に対する伝達関数の s 平面 (a)，無名相入力に対する伝達関数の s 平面 (b)

図 2.6.5 は正相入力における周波数特性と無名相入力に対する周波数特性を示したもので，さらに 2 つの特性を足し算したものを示した図である．無名相成分に対する特性はシミュレーション結果より通過域において -50 dB 近くになり，それ以外において -40 dB ほどになることが確かめられた．従って正相入力に対する周波数特性と無名相成分の周波数特性を足すとシミュレーション結果から得られた -50 dB 近くになる事を示した．
2.7 2章まとめ

RCPFを90°移相器として用いた時に，2通りの入力方法に対する出力を解析的に求めた。解析結果から，方法Aに対する位相差は厳密に90°になることがわかり，振幅比は1のあたりで振動することがわかった。方法Bに対する振幅比は厳密に1となることがわかり，位相差は90°のあたりで振動することがわかった。この解析から，RCPFから出力される位相が90°により近いものが必要なら方法Aを選択し，RCPFから出力される振幅比がより1に近いものが必要なら方法Bを選択するという指針が得られた。

等リプル設計における6段RCPFを用いて位相差と振幅比をシミュレーションからも求めた。シミュレーション結果と解析結果を照らし合わせると，両者はよく一致した。
またシミュレーション結果から方法 A の振幅比、方法 B の位相差が等リプル状に変化することがわかった。今後の課題は、この誤差が等リプル状になることを明確にしなければいけない。

非対称な 4 相信号を扱うことによって、不要な対称成分が RCPF に入力された場合における RCPF の出力の影響を検討した。

RCPF の出力の影響を見るために無名相成分を入力して IRR を見えた。

無名相成分を入力したことによる IRR は高いイメージリジェクションを要するフィルタで大きな影響があることがわかった。具体的には 3 段 RCPF の IRR が -71 dB であったものが、
-52 dB まで悪くなった。

零相成分に関しても、無名相成分と同様に入力に 1% 入れると入れた分がそのまま出力される。零相は電圧伝達関数が 1 であるので、完全にフラットな特性が出てくる。従って無名相成分と比べてさらに IRR が悪化する。

以上から、高 IRR 信号処理での無名相成分と零相成分は予め除去する必要があることが明らかになった。
第3章

多相フィードフォワード OTA (Feed-forward OTA, F/F OTA)

3.1 全差動 F/F OTA

フィードフォワード OTA は我々の研究室で提案されている回路である。F/F OTA の説明に入るために、OPA と OTA の違いを説明する。OPA(Operational Amplifier) は、オペアンプとしてよく知られており、電圧を入力して電圧を出力するものである。一方、OTA(Operational Transconductance Amplifier) は、電圧を入力し、電流を出力するものである。

図3.1.1 OPA(左), OTA(右) のモデル

図3.1.1 は、OPA と OTA のモデルを表した図である。図3.1.1(左) は電圧で出力されるために出力側が電圧源で表現される。図3.1.1(右) は電流で出力されるため出力側が電流源で表現される。従って出力側からみたインピーダンスが異なる。我々の研究室が提案している増幅
器は、OTAと名づけられているがほとんどの場合、OPAとして扱っている。それは、プロセスの微細化によってMOSトランジスタ自体の出力抵抗が下がってきているからである。従ってOTAとしてアンプを設計したつもりでも、多くの場合はOPAに近いものとなる。

フィードフォワード型のOTAは、2種類ありその他にフィードバック型（F/B OTA）が1種類ある。

図3.1.2 平均型 F/F OTA(左上)、加算型 F/F OTA(右上)、平均型 F/B OTA(下)の回路

図3.1.2(左上)は、平均型 F/F OTAである。図3.1.2(右上)は、加算型 F/F OTAである。平均型と加算型の違いは、入出力を短絡しているインバータをつなぐかつながないかの違いだけである。図3.1.2(左上)の(1)と書いてあるノードをつなぐとその部分で上下の信号が平均され、差動分がキャンセル、同相分が平均される。対して加算型は信号の平均がとられず、差動、同相両方がそのまま逆相へフィードフォワードされる。従って加算型の利得は平均型より2倍高くなる特徴がある。F/B OTAは文字通り、出力の一部をフィードバックする構成になる。F/B OTAはフィードバックする分誤差が強くなるが、平均型と加算型に比べ利得が低い。

図3.1.2の各OTAは差動入出力の回路である。インバータ自体は基本的にシングルエンド
であるから差動構成にするには，2 系統で構成する．差動信号を扱う上で必ず考えなければならない成分に同相成分がある．同相成分は信号同士の位相がすべて等しい成分である．同相成分が出力でどれだけ抑圧されているか示す同相除去比 (CMRR: Common Mode Rejection Ratio) は，アンプの重要な特性の 1 つである．2 系統のインパータだけでは，同相成分を打ち消すことができない．同相成分を打ち消すためには，符号が反転した信号を用いて引き算を利用す.

\[
\begin{align*}
\text{INV2} & \quad \text{INV3} \\
V_{in} & \quad V_{in} \\
\text{Vout} & \quad V_{out} \\
\end{align*}
\]

図 3.1.3 −1 倍回路とその小信号等価回路

図 3.1.3 は −1 倍回路とその小信号等価回路である．入出力を短絡した INV3 の \(g_{m3} \) は図 3.1.3 のように \(1/g_{m3} \) の抵抗がぶら下がっているように見える．従って図 3.1.3(右) の小信号等価回路より INV2, INV3 の利得 \(V_{out}/V_{in} \) は，

\[
\frac{V_{out}}{V_{in}} = -g_{m2} \frac{1}{G_{o2} + G_{o3} + g_{m3}} \tag{3.1.1}
\]

となる．ここですべて同じサイズのインパータを用いていると仮定すると，\(g_{m2} = g_{m3} = g_{m} \)，\(G_{o2} = G_{o3} = G_{o} \) となる．さらに \(g_{m} \gg G_{o} \) であるから \(G_{o} \) は無視できる．以上より，

\[
\frac{V_{out}}{V_{in}} = -g_{m} \frac{1}{G_{o2} + G_{o3} + g_{m3}} = \frac{-g_{m}}{2G_{o} + g_{m}} \approx -1 \tag{3.1.2}
\]

つまりインパータと入出力を短絡したインパータを用いることで信号を反転することが出来る．

図 3.1.4 は，同相信号が出力で抑圧されるメカニズムを書いたものである．入力に差動信号と同相信号が入ったとき \((V + V_{CM}, -V + V_{CM})\)，経路 1 を通る信号はそのまま増幅される \((-AV - AV_{CM}, AV - AV_{CM})\)．経路 2 を通る信号は −1 倍回路を通り平均される \((V_{CM}, -V_{CM})\)．経路 1 と経路 2 で −A 倍された信号がたされる \((-AV, AV)\)．
3.2 多相回路用 OTA

前章までで述べてきた全差動 F/F OTA だが、4 相信号を生成あるいは、増幅する事を考えると、従来は無批判に差動アンプを 2 組用いていた。2 組の差動アンプのうち 1 つは、実部を表す微細 180° 位相が異なる信号を、もう 1 つは実部を表す微細 180° 位相が異なる信号を用いていた。今まではほとんどがこの手法をとってきた。しかし、差動アンプ毎の相分は圧縮されているものの、2 つの差動アンプ間の相分についてはほとんど議論がなされていなかった。しかし差動アンプ同士に相互の結合がない状態でそれぞれのアンプに誤差がある場合、本来存在しないれば成分が発生する可能性がある。従って差動アンプ間の誤差が入力された場合、アンプの出力にそのまま誤差が出力される問題が生ずる。

本章では多相回路用 OTA を考えることによって、多相信号処理を行うアンプを構成し、2 つのアンプ間の誤差に対応する成分がアンプに入力された時の影響を検討する。また本論文の一貫の目的である 3 相信号処理に用いるアンプを検討する。その中で 4 相方式と 3 相方式の違いを明らかにする。また MOS の製造誤差を考慮し、アンプの特性が製造誤差でどの程度違いがあるかを検討する。
3.2.1 4相用 F/F+F/B OTA

3.1節では、全差動F/F OTAについて説明したが、実際にアンプを設計すると1段構成では、高い利得が取れず実用性に乏しい。従って2段構成にした図1.1.7をベースに拡張を行なう。全差動F/F+F/B OTA(図1.1.7)の回路について説明する。

図3.2.1の特徴は青枠で囲んでいるフィードフォワード部のインバータとフィードバック部のインバータを共有することでインバータの個数を16個から12個に減らしている。

さて多相化を行ううじねあるけは、全差動時と同じ特性を維持しなければいけない。特性が変化しないようにするためには、差動信号だけを増幅し、同相信号は抑圧する事である。

図3.2.2は差動信号を増幅する部分と同相信号を平均する部分での1相分の回路である。全差動時の特性を維持するためには、平均操作をするノードと差動信号を増幅する部分があればよい。従って図3.2.2をn相ならn個並べて平均操作を行うと好ノードを接続していればよい。3相と4相にしたときの回路図を図3.2.3に載せた。

![図3.2.1 平均型F/F+F/B OTAのインバータを共有したときの図](image)

図3.2.3の回路によると、零相成分(=同相成分)が入力されたときは、4相信号の全ての平均値である零相成分は1段目でF/Fされて、2段目でF/Bされて出力側で抑圧される。しかしその対称成分は、そのまま増幅されて出力されてしまう。これは2本の信号線を用いる従来の差動増幅器において同相成分が同相成分(=零相成分)と差動成分しか存在しないため同相成分だけが抑圧される回路構造になっていたためである。

4相信号を扱う上で、不要な対称成分は抑圧しなければいけない。なぜなら4相信号処理において必要な対称成分は正相成分と逆相成分のみで残りの成分(零相成分と無名相成分)は誤差の原因となるからである。

図3.2.3(右)は3相F/F+F/B OTAであるが、4相F/F+F/B OTAと比べて大きな違いがある。
3.2.2 平均型 F/F+B OTA の単相回路

3.2.3 平均型 F/F+B OTA を多相化したときの 4 相 F/F+B OTA と 3 相 F/F+B OTA
それは対称成分の違いである。4相交流信号についての対称成分は零相成分、無名相成分、正相成分、逆相成分がある。これに対して3相交流信号の対称成分については、零相、正相、逆相の3つである。4相と3相を比べた場合、4相は新たな無名相成分が加わっている。逆に言うと3相信号用アンプには、不要な成分が1つしかないということである。不要な対称成分が零相成分だけならば差動増幅器の機能を保持すれば、零相成分は圧縮でき、残りは考えなくてよい。

無名相成分が問題になるのは、第2章で述べたように高イメージレジェクションを要するフィルタである。高IRRの信号処理においては、4相信号中の無名相成分を抑えて除去する必要がある。図3.2.3(左)の4相F/F+F/B OTAは無名相成分に対して何の対策も取っていないことからそのまま増幅されてしまう。従って図3.2.3(左)を用いて4相信号を生成した場合、後段に接続されるRCPFに無名相成分が入力され、RCPFのIRRが悪化してしまう可能性がある。従って図3.2.3(左)を4相信号処理用として用いるには、無名相成分を除去するハードの追加が必要である。

3相信号処理においては、無名相成分がもともと存在しない。従ってこれ以上のハードの追加なく3相信号処理に用いる事が出来る利点がある。

3.3 4相F/F+F/B OTAの無名相成分の圧縮

4相信号を扱った場合、無名相成分を打ち消すためには、実際にどのくらいハードを追加すればいいのだろうか？本節は、無名相成分を圧縮するためのどの程度ハードが増えるかを検討する。4相信号を扱うと、必ず無名相成分が出てくることになるが、図3.2.3(左)は零相が圧縮できる構造になっている。従ってこの回路に無名相成分を抑制する回路を付加する。

無名相成分は、アンプの入力に上から+，−，+，−で入力される場合であるとする。この成分を打ち消すには、出力で4本ある経路のうち上から1番目と3番目を減算するようにし、2番目と4番目を加算するようにすればよい。

図3.3.1のようにF/F部に−1倍回路を4組付加することで出力で無名相成分を圧縮できる。しかし4組の−1倍回路を付加すると、それだけでインパータ数が12個追加される。これは回路面積削減、消費電流低減の観点からは大きな問題である。

3.4 3相F/F+F/B OTA

これまでに4相F/F+F/B OTAを不要な対称成分の観点から見ていき、3相の場合と比べてきた。3相信号処理においての対称成分は、正相成分、逆相成分、零相成分であるが、不要な

— 37 —
成分である零相成分は 3 相 F/F+F/B OTA においてすでに抑圧される構造である。そのためこれ以上回路の追加がない。回路面積、消費電流を考えるとやはり素子数、ノードの数が減る 3 相方式の方が有利であることがわかる。ここからは 3 相方式と 4 相方式を実際に設計し、両者の特性を比較する。また製造誤差を含んだとき、アンプの特性にどう影響を与えるかをシミュレーションによって検討する。

図 3.3.1 は平均型 3 相 F/F+F/B OTA（左）と算出型 F/F+F/B OTA である。これらの構成の違いは、1 段目において信号分と零相分を一緒に F/F するか、零相分をだけを F/F するかの違いであるが、算出型は信号分も隣接相に F/F しているので平均型よりも利得が 2 倍高く取れる特徴がある。この構成におけるインバータの数は、平均型 4 相 F/F+F/B OTA と比べると 24 個から 18 個になる。また算出型 4 相 F/F+F/B OTA と比べると 32 個から 24 個になる。インバータを減らすことで消費電流を低減することができ、回路面積も削減できる。

さて実際に平均型 3 相 F/F+F/B OTA と平均型 4 相 F/F+F/B OTA を設計し特性を比較する。図 3.4.2 は、3 相 F/F+F/B OTA であるが、各領域に色がついた枠で囲ってある。各領域に対応したインバータのサイズを表 1 に示す。また表 2 に 3 相と 4 相 F/F+F/B OTA の特性表を載せる。

なお 4 相 F/F+F/B OTA は 3 相 F/F+F/B OTA に 1 相加えただけなのでインバータのサイズ
図 3.4.1 平均型 3 相 F/F+F/B OTA(左) と加算型 3 相 F/F+F/B OTA(右)

図 3.4.2 平均型 3 相 F/F+F/B OTA の設計回路
表 3.1 シミュレーションに用いた各インバータのサイズ

<table>
<thead>
<tr>
<th>Domain</th>
<th>(W_p [\mu m])</th>
<th>(W_n [\mu m])</th>
<th>(L [\mu m])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>3</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0.18</td>
</tr>
<tr>
<td>2′</td>
<td>1.85</td>
<td>3.82</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>0.18</td>
</tr>
</tbody>
</table>

表 3.2 3 相、4 相 F/F+F/B OTA の各特性

<table>
<thead>
<tr>
<th>Item</th>
<th>3-phase OTA</th>
<th>4-phase OTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>1.0 V</td>
<td>1.0 V</td>
</tr>
<tr>
<td>Current consumption</td>
<td>102.62 (\mu A)</td>
<td>136.25 (\mu A)</td>
</tr>
<tr>
<td>Tranceconductance</td>
<td>20.41 mS</td>
<td>20.41 mS</td>
</tr>
<tr>
<td>Output impedance</td>
<td>29.95 k(\Omega)</td>
<td>29.95 k(\Omega)</td>
</tr>
<tr>
<td>Cutoff frequency</td>
<td>2.78 MHz</td>
<td>2.78 MHz</td>
</tr>
<tr>
<td>Positive/negative sequence Gain</td>
<td>57.79 dB</td>
<td>57.79 dB</td>
</tr>
<tr>
<td>Zero-sequence gain</td>
<td>-64.47 dB</td>
<td>-64.47 dB</td>
</tr>
<tr>
<td>No-name sequence gain</td>
<td>—</td>
<td>57.79 dB</td>
</tr>
<tr>
<td>Zero-sequence supression</td>
<td>122.26 dB</td>
<td>122.26 dB</td>
</tr>
</tbody>
</table>

表は省略する。

表 3.2 を見ると、3 相と 4 相の特性で違う点は消費電流と無名相成分に対する利得である。消費電流はインバータの数が 24 個から 18 個になっているので、その分減少し、値としては 33.63 \(\mu A \) 少ない。無名相成分に対する利得は、正相/逆相に対する利得と同じ値を取っているので抑制されずそのまま増幅されていることがわかる。

零相成分に対する利得は、-64.47 dB と非常に高い値が取れている。これは特定のインバータのサイズを調整することで実現した。次節でインバータのサイズ調整について説明する。
3.4.1 零相 (同相) 利得のチューニング [17]

F/F+F/B OTA の各インバータはからつきを考えると全てのインバータを同じサイズにしたほうがよい。同じサイズで設計しても理論的に、引き算によって出力の零相利得は 0 になるはずである。しかし実際にインバータを全て同じサイズで設計すると、F/F 部における零相利得はほぼ 1 倍で出力される。

これは式 (3.1.1) で説明した、−1 倍回路の利得に関係している。−1 回路部の利得がほぼ −1 倍になるのは、MOS の g_{m} が MOS の出力抵抗 G_{o} に比べ無視できるほど大きいときである。しかし、最近の微細プロセスでは MOS 単体の出力抵抗が下がってきている。

従って、式 (3.1.1) で説明した −1 倍回路における利得の式は次のようになる:

$$\frac{V_{out}}{V_{in}} = -g_{m2} \frac{1}{G_{o2} + G_{o3} + g_{m3}} = -(1 - \epsilon) \quad (\epsilon > 0)$$

(3.4.1)

式 (3.4.1) より実際は −1 から $1 - \epsilon$ だけ目減りしてしまう。その目減りが F/F 部で引き残りとなり、ほぼ 1 倍で出力された原因である。そこで −1 倍回路の利得をインバータのサイズ調整で −1 倍に近づける。図 3.4.2 の領域 2’ のサイズを調整するため −1 倍回路の小信号等価回路をみる。

図 3.4.2 の −1 倍回路における小信号等価回路は図 3.4.3 のようになる。F/F 回路だけの場合と比べて F/B のインバータ分の出力抵抗が並列に入る。
図 3.4.3 F/F+F/B OTA の -1 倍回路とその小信号等価回路

従って、図 3.4.3 における V_{out}/V_{in} は,

$$
\frac{V_{out}}{V_{in}} = -\frac{g_{m2}}{G_{o2} + G_{o2\prime} + g_{m2} + G_{o2}}
$$

(3.4.2)

$$
= -\frac{g_{m2}}{2G_{o2} + \alpha(G_{o2\prime} + g_{m2})}
$$

(3.4.3)

となる。

式 (3.4.3) が -1 となる α を決めてやればよい。式 (3.4.3) が -1 となる関係式は、

$$
1 = \frac{g_{m2}}{2G_{o2} + \alpha(G_{o2\prime} + g_{m2})}
$$

(3.4.4)

となり、式 (3.4.4) を α について解くと,

$$
\alpha = \frac{g_{m} - 2G_{O}}{g_{m} + G_{O}}
$$

(3.4.5)

となる。ただし α は基準インパータのサイズからの量を表しているので式 (3.4.4) の出力抵抗とトランジスタの伝導率は基準サイズのインパータに合わせるため、1 つの変数に置いた。基準サイズは、$W_p = 4 \mu m, W_n = 2 \mu m$ である。
基準インバータのサイズの出力抵抗 G_0 とトランスコンダクタンス g_m はシミュレーションによって推定した．値は $g_m = 127.96 \mu m$, $G_0 = 3.2391 \mu S$ となり，そのとき $\alpha = 0.925$ と求まる．

従ってサイズ調整を行なったインバータのサイズは，

\begin{align*}
W_p &= 4 \mu m \times 0.925 = 3.704 \mu m \quad \text{(3.4.6)} \\
W_n &= 2 \mu m \times 0.925 = 1.852 \mu m \quad \text{(3.4.7)}
\end{align*}

となる．さらにシミュレーション時の微調整により，$W_p = 3.82 \mu m$, $W_n = 1.85 \mu m$ の時が，同相利得が -64.47 dB と一番低くなった．従って，式 (3.4.6) と式 (3.4.7) の W の値を採用した．サイズ変更前は -18 dB であるので，約 46 dB よくなっている．

−1 倍回路のインバータのサイズを調整することによって，原理的に低い零相利得を得ることが出来るが，インバータのばらつき耐性が弱くなる欠点がある．これは全てのインバータが同じサイズで構成されているため，同一チップ内で作れるインバータは，全てが同じようなばらつきを持つ．しかしサイズが違うインバータが混ざれば，それだけが違うばらつきになってしまうためである.

零相利得のチューニングを行なって，低い零相利得が実現できてもばらつきによって零相利得がもとの -18 dB より大きくなればチューニングの意味がなくなってしまう．次節でインバータのばらつきによってどの程度の零相利得が実現できるかを検討する．
3.4.2 モンテカルロ解析における零相利得 (同相利得) のばらつき

3相と4相F/F+F/B OTAが入出力短絡したインパータのサイズを変更することによって零相利得がより抑圧されることがわかった．しかし特定のインパータのサイズ変更によってF/F+F/B OTAのばらつき耐性が悪くなる．本節では，入出力を短絡したインパータのサイズ調整を行なったとき，インパータのばらつきによってF/F+F/B OTAの零相利得がどの程度実現できるかをモンテカルロシミュレーションによって検討する．なおシミュレーションの対象となる回路は，3相平均型F/F+F/B OTA(図3.4.2)である．

3.4 節で述べたシミュレーションのMOSを現実のばらつきモデルにして零相利得のばらつき耐性をみる．MOSの製造時に起こるばらつきは，全てのインパータが同時にばらつく(Proccesばらつき)場合と全てのインパータが個別にばらつく(Mismatchばらつき)場合の2つである．モンテカルロシミュレーションでは，Processばらつきだけを含んだもの，Mismatchばらつきだけを含んだもの，そして両者を含んだもので行い，零相利得をみる．なおMOSのばらつきモデルのMOSはTSMC社0.18μmCMOSプロセスにおけるものを使った．

![グラフ](image)

図3.4.4 3相F/F+F/B OTAの繰り返し回数1000のモンテカルロ解析による零相利得の度数分布

図3.4.4と図3.4.5はサンプル数1000回のモンテカルロ解析における零相利得の度数分布

- 44 -
図 3.4.5 3 相 F/F+F/B OTA の繰り返し回数 1000 のモンテカルロ解析による零相利得の累積分布

図 3.4.6 3 相 F/F+F/B OTA の繰り返し回数 1000 のモンテカルロ解析による零相利得の度数分布
と累積分布である。また、図 3.4.6 は図 3.4.4 の Process はらつきと Mismatch はらつき両方を含んだ結果を抜き出したものである。これらの結果から零相利得の大半は決めているのは Mismatch はらつきであることがわかる。すなわちこの Mismatch はらつきを小さくしないと
零相利得のはらつき耐性は向上しない。はらつきを考慮しない 3 相 F/F+F/B OTA の零相利得は−64.47 dB であったが、図 3.4.6 から零相利得は悪くなっている。平均値では−11.12 dB となり、最悪で 35 dB もの零相利得が出現する事がわかる。

零相利得を悪化させる原因となるのが、Mismatch はらつきであることがわかった。そこで
零相利得が 0 dB 以上になる割合を減らす目的で、当初設計した MOS のアスペクト比 (MOS のゲートの L と W の比) を一定にしたまま、MOS のサイズだけを大きくした。なおサイズ量の変化は、基準サイズ (表 3.1 の領域 2 のインパータ) から 2 倍と 5 倍について検討した。

図 3.4.7 サイズ変更を施した時のモンテカルロ解析による零相利得の度数分布

図 3.4.7 がサイズ変更を行なったときの度数分布である。サイズ変更を行なう前に比べピークが低いほうへ向かっていることがわかる。表 3 からも平均値は確かに低くなっていることが

− 46 −
表3.3 サイズ変更行なったときの平均値と標準偏差

<table>
<thead>
<tr>
<th></th>
<th>Standard size</th>
<th>2× size</th>
<th>5× size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average [dB]</td>
<td>−11.12</td>
<td>−15.09</td>
<td>−21.00</td>
</tr>
</tbody>
</table>

わかり、逆に標準偏差はサイズを大きくしていくと増えていっている。これはばらつきが大きくなくなっているように見えるが平均値も下がっているので、dBで表すとばらつきの範囲が大きく見えるだけで実際のIRRは改善されている。しかし累積分布を表した図3.4.8をみてみると、零相利得が0の割合はあまり変わらないことがわかる。

従ってサイズ変更を行うことによって全体の平均値は下げることができるが、ばらつきと零相利得が0dB以上の増加はそれほど下げることができないことがわかる。しかしレイアウトにコモンセントロイド配置を採用すればMismatchばらつきを相殺することが可能であるため、零相利得のばらつき耐性は改善できると考えられる。

– 47 –
3.4.3 3相 F/F+F/B OTA を用いた Tow-Thomas 複素バイカッドフィルタ

図 1.1.4 の 3相フィルタに用いることができるフィルタを検討する。文献 [10] によって提案されている 3相 Tow-Thomas 複素バイカッドフィルタは増幅器に OPA を用いている。背景でも述べたように、OPA は MOS を最低でも 3段縦積みにしなければならず、1.0 V での動作が困難である。本論文で提案している 3相 F/F+F/B OTA は 1 V でも良好に動作しており、この 3相 Tow-Thomas 複素バイカッドフィルタに適用しても動作が期待できる。従って本節の目的は、3相 Tow-Thomas 複素バイカッドフィルタの増幅器に 3相 F/F+F/B OTA を適用して、フィルタとしての動作を確認する事である。

ここでバイカッドフィルタについて説明する。バイカッドフィルタは増幅器を用いて、アクティブ化したフィルタである。従って、通過域で利得を持たせることができる。

一般的なバイカッドフィルタの伝達関数は、

\[
T(s) = \frac{\pm \omega_0}{s^2 + (\omega_0/Q)s + \omega_0^2}
\] (3.4.8)

となる。

![バイカッドフィルタの図](image)

図 3.4.9 基本的なバイカッドフィルタの例

図 3.4.9 は基本的なバイカッドフィルタの回路図である。式 (3.4.8) を図 3.4.9 の式に置き換
伝達関数 \(T(s) \) は次のようになる。

\[
T(s) = \frac{-1/R_3 R_4 C_1 C_2}{s^2 + (1/R_1 C_1)s + 1/R_2 R_4 C_1 C_2}
\]

式 (3.4.8) と式 (3.4.9) を比較すると、以下の関係式が導ける、

\[
\omega_0^2 = \frac{1}{R_2 R_4 C_1 C_2}
\]

\[
Q = \sqrt{\frac{R_1^2 C_1}{R_2 R_4 C_2}}
\]

\[
H = \frac{R_2}{R_3}
\]

ここで \(C_1 = C_2 = 1, R_4 \) と置くと、

\[
R_1 = Q
\]

\[
R_2 = 1
\]

\[
R_3 = \frac{1}{H}
\]

となる。式 (3.4.13)～式 (3.4.15) によりバイカッドフィルタは次の調整が独立に出来る。

1. \(R_2 \) によって与えられた周波数 \(\omega_0 \) を調整できる。
2. \(R_1 \) によってすでに与えられた周波数 \(\omega_0 \) を変化させず \(Q \) の調整できる。
3. \(R_3 \) によってすでに与えられた周波数 \(\omega_0 \) と \(Q \) を変化させず \(H \) (利得) を調整できる。

それぞれが独立に決定できるので、設計が容易という特徴がある。

図 3.4.10 が 3 相 Tow-Thomas バイカッド複素フィルタである。バイカッドフィルタに用いる増幅器に 3 相加算型 F/F+F/B OTA(図 3.4.11)を選んだ。表 3.4 が図 3.4.11 の各領域におけるサイズである。バイカッドフィルタは増幅器の利得が高い事が望ましいので平均型より利得が高く取れる加算型を選択した。

<table>
<thead>
<tr>
<th>Domain</th>
<th>(W_p [\mu m])</th>
<th>(W_n [\mu m])</th>
<th>(L [\mu m])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.68</td>
<td>4.80</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>30.0</td>
<td>10.8</td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>42.6</td>
<td>15.0</td>
<td>0.40</td>
</tr>
</tbody>
</table>
表 3.5 の素子値では中心の周波数が 100 kHz シフトし、通過域で利得が 12 dB になる。図 3.4.12 が加算型 3 相 F/F+F/B OTA のポート線図である。使用している OTA は 525 kΩ と 12 pF の並列負荷で 72.02 dB でカットオフ周波数 4.29 kHz である。位相余裕は 23° である。位相余裕が 23° と少ない理由は増幅器の電源電圧を 1.0 V に下げたため利得が高くなり、その分位相がより遅れたためである。この設計で 1.8 V で動作させると位相余裕は 60° とれる。

表 3.5 3 相 Tow-Thomas Biquad 複素フィルタに用いた各素子値

R_1	130 kΩ	R_2	525 kΩ
R_3	141.5 kΩ	R_4	114.75 kΩ
R_5	229.5 kΩ	C_1	12 pF
図 3.4.11 加算型 F/F+F/B OTA の回路図

図 3.4.12 加算型 3 相 F/F+F/B OTA のボーデ線図
図 3.4.13 3 相 Tow-Thomas Biquad 複素フィルタの周波数特性

図 3.4.13 は理想アンプを用いたときの特性も載せている。図 3.4.13 より中心周波数が100 kHz にシフトしていることがわかり、そのときの利得が 12 dB になっている。理想アンプを用いた時と比べると特性は非常に良く一致している。

3 相 Tow-Thomas Biquad 複素フィルタに用いた増幅器の位相余裕が少なかったため、フィルタの過渡解析を行なって発振の有無を調べた。過渡解析における入力は、バイカッドフィルタの通過域にあたる周波数 100 kHz とし、そのときの振幅が 10 mV_{0-p} となるようにした。

図 3.4.14 は、3 相 Tow-Thomas Biquad 複素フィルタの過渡解析の結果である。入力に対して、出力が正常に振れていることがわかる。
3.5 F/F OTA の同相利得のチューニングの検討

3.4 節では、3 相 F/F+F/B OTA のインバータがばらついた時どの程度の零相利得が実現できるかを検討した。

そのときの零相利得の調整箇所は入出力を短絡した所のみインバータのサイズを変更していた。

しかし調整後の零相利得に関係があるのは、−1 倍回路の利得であるので −1 倍回路の 3 つのインバータのどれでも調整できると考えられる。そこで本節は、−1 倍回路のインバータのサイズ調整を複数の箇所で試し、3.4 節の時と同様にモンテカルロ解析によって複数の調整箇所による違いを見る。

また、チューニングにおける同相利得は全てのインバータが個別にばらつくところの影響が大きいということがわかったので、コモンセントロイド配置を採用したときと線対称な配置でのどの程度、同相利得が違うのかを検討するために F/F OTA を試作する。
図 3.5.1 は全差動 F/F OTA の調整する箇所を表記したものである。今回、検討した調整箇所は 3.4 節でも検討した INV3, INV6 による領域 1, 次に INV4, INV7 による領域 2, 最後に INV2, INV3, INV5, INV6 による領域 3 とした。

シミュレーションに使用した MOS のサイズは, \(L = 0.25 \mu m, W_p = 6 \mu m, W_n = 3 \mu m \) である。またインバータのトランスコンダクタンス \(g_m = 219.91 \mu S \), 出力抵抗 \(G_o = 3.8362 \mu S \) である。基準のインバータのサイズから調整する量 \(\alpha \) は 3.4.1 節で述べた方法と同様に小信号等価回路から求める。

領域 1 については, \(\alpha = 0.9685 \) でそのときの同相利得が \(-73.77\ dB \), 領域 2 については, \(\alpha = 1.032 \) でそのときの同相利得が \(-56.04\ dB \), 領域 3 については, \(\alpha(INV2, 5) = 1.015, \alpha(INV3, 6) = 0.9830 \) でそのときの利得が \(-58.67\ dB \) と決定した。なお上記 \(\alpha \) の値は、微調整により同相利得が最も小さくなる値に決めた。

<table>
<thead>
<tr>
<th></th>
<th>サイズ調整なし</th>
<th>領域 1</th>
<th>領域 2</th>
<th>領域 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均値 [dB]</td>
<td>1.980</td>
<td>1.024</td>
<td>1.174</td>
<td>1.024</td>
</tr>
<tr>
<td>標準偏差 [dB]</td>
<td>9.842</td>
<td>10.08</td>
<td>9.681</td>
<td>10.08</td>
</tr>
</tbody>
</table>

3.4.2 節と同じ条件でモンテカルロ解析を行なった。繰り返し回数 1000, ばらつきは Process ばらつきと Mismatch ばらつき両方を含んだもの、同相利得が 1 kHz のものである。
表 3.6 は，各領域の平均値と標準偏差をまとめたものである．サイズ調整しないものを含め，全ての領域で大きな違いは見受けられない．また図 3.5.2 は度数分布したものであるが，この結果からも各領域での違いは見受けられない．F/F OTA 単体では，8 割くらいの同相利得がプラスの領域に分布している．これでは，実際に作れないが，TSMC 社の MOS の統計パラメータはかなり悲観的に設定していると考えられる．実際，我々の研究室で試作した全差動 F/F+F/B OTA [17] は，シミュレーション結果よりも同相利得が低くなっている測定結果を得た事から言える．

結果を見てみると調整領域によって同相利得の違いが見受けられなかった．この原因について検討する．

CMOS インパータのトランスコンダクタンス g_m と出力抵抗 G_o は L と W に関してそれぞれ次のような関係式がある:

$$g_m \propto \frac{W}{L} \quad (3.5.1)$$
$$G_o \propto \frac{L}{W} \quad (3.5.2)$$

となる．そこで例えば，図 3.5.1 の領域 2 のインパータの L, W をばらつかせる事を考える
と、結局 L と W の比が K 倍になった事と考えられる。そのとき -1 倍回路の利得を考えると、

$$A_v = \frac{g_{m2}}{G_{o2} + G_{o3} + g_{m3} K G_{o4} K}$$

(3.5.3)

INV4 のトランスコンダクタンスと出力抵抗の分母分子に K 倍がつくことになる。しかしこれ
らはキャンセルされるので、-1 倍回路の利得の変動はない。これは -1 倍回路のどの部分の
インバータのサイズを変更しても変わらない。従って -1 倍回路のどの部分のサイズを変更し
ても全体の同相利得のばらつきに影響しないことがわかる。

3.6 F/F OTA の設計と試作

前節で全差動 F/F OTA のインバータを TSMC 支給のばらつきモデルのものを用いてモンテ
カルロ解析を行なった。そのときの同相利得がシミュレーションでは、0 dB を超えるものが
8 割以上になり、同相利得のチューニングが無意味になってしまった。しかしながら実際に
設計した全差動 F/F+F/B OTA の測定結果はシミュレーションよりもよくなっていることと、
Mismatch ばらつきを減らすば改善できることがわかっている。

そこで全差動平均型 F/F OTA と全差動加算型 F/F OTA の 2 つで従来の線対称な配置とプロ
セスの勾配を相殺することができるコモンセントロイド配置を試作し、その両者でどの程度、
同相利得が違うのかを確かめる。

同相利得に大きく影響がある Mismatch ばらつきの影響を 2 通りの配置で IC を試作して確
かめる。

3.6.1 F/F OTA の設計

図 3.6.1 に試作する 2 種類の F/F OTA を載せた。また表 7 にシミュレーションに用いた各
インバータのサイズを載せた。なお領域 2 は、同相利得のチューニングを行なっている。設
計、試作するプロセスは、ルネサステクノロジー 0.15 μm プロセスである。

表 3.7 シミュレーションに用いた各インバータのサイズ

<table>
<thead>
<tr>
<th>Domain</th>
<th>W [μm]</th>
<th>W_o [μm]</th>
<th>L [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5</td>
<td>1.5</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>4.01</td>
<td>1.3</td>
<td>0.16</td>
</tr>
</tbody>
</table>

図 3.6.2 は平均型と加算型 F/F OTA の周波数特性である。平均型と加算型の同相利得は両者
図 3.6.1 試作する 2 種類の F/F OTA

図 3.6.2 試作する 2 種類の F/F OTA の周波数特性
3.6.2 ダミートランジスタを考えた回路

MOS トランジスタは製造時において、特性の変化が起こる可能性がある。特にチャネルが出来るゲート、ソース、ドレインの部分は、製造条件の変化に敏感で少しの変化が大きな影響を及ぼす。OTA を構成する各 MOS の周囲のレイアウト状況が異なるときエッチングの状況も変化する。これらの影響を少なくするためにダミートランジスタを配置し特性の変化を緩和する。

図 3.6.3 ダミートランジスタを用いた CMOS インバータ

図 3.6.3 がダミートランジスタを付加した CMOS インバータである。また実回路の CMOS インバータのゲートにダイオードを入れ、製造工程で起こる、ゲートに電荷が溜まる現象を防ぐ。これはゲートに電荷が溜まれば、ゲート電極が破壊されてしまい、トランジスタの特性が劣化してしまうからである。

3.6.3 配置の決定

従来の配置は、図 3.6.4 の回路図のように真ん中を対称線において、上下対称にレイアウトしていた。

図 3.6.5 においても同様に真ん中を対称線において上下対称に配置し、レイアウトを行なった。
3.6.4 コモンセントロイド配置

コモンセントロイド配置 [18] は、プロセスの勾配を減らすことが出来る有用な手段であり、デバイスのマッチングを重要とする差動回路でよく使われる手法である。図 3.6.6 は 1 次元と 2 次元の時のコモンセントロイド配置を示した図である。図 3.6.6(a) は横方向のプロセス勾配が起きたときに、真ん中の重心 (Centroid) ちょうど 0 になる。また図 3.6.6(b) は横方向と縦方向の 2 方向の勾配が起きてても同様に重心で勾配が 0 になる。勾配は MOS トランジスタの V_{th} で例えると理解しやすい。図 3.6.6(a) で説明すると、左から勾配が起きて B の素子の V_{th} が高く、右に行くほど V_{th} が下がっていく。最終的に一番右の B の素子の V_{th} が一番小さい。そのとき重心では、V_{th} が平均値になっている。よって、V_{th} の大きいものと小さいものを組み合わせることにより、勾配の影響を軽減できる。

図 3.6.7 は CMOS インバータ単体のコモンセントロイド配置である。PMOS と NMOS をわざと 2 つに分けて並列につなげる。
図 3.6.5 加算型 F/F OTA の回路図とレイアウト図

図 3.6.6 2 次元と 3 次元のコモンセントロイド配置
図 3.6.7 CMOS インバータ単体のコモンセントロイド配置

図 3.6.8 F/F OTA のコモンセントロイド配置

図 3.6.8 が採用した F/F OTA のコモンセントロイド配置である。マッチングを重要とする INV1 と INV4, INV7 と INV8 を並ぶように配置し, -1 倍回路にあたる INV2 と INV3, INV5 と INV6 も隣同士に並ぶように配置した。
図 3.6.9 F/F OTA のコモンセントロイド配置におけるレイアウト

図 3.6.9 は各インパータの配置をどのように行なったかを書いた図である。図 3.6.8 は例えば INV2 における A と B を近くに配置し、レイアウトを行なう。しかし図 3.6.9 は、インパータを対角線上に配置することで中心でプロセスの勾配を無くすように配慮した。

コモンセントロイド配置は、プロセスの勾配を抑圧する有用な手段であるが、図 3.6.9 のように配線がかなり複雑になる。配線が重なるとそこに寄生容量がついてアンプの特性が悪くな
ル原因となる。そのため状況により必ずしもコモンセントロイド配置が最善であるとは言えないが多くの場合に有効な配置方法である。なお加算型 F/F OTA のコモンセントロイド配置におけるレイアウトは図 3.6.9 とほぼ同じであるため省略した。なお今回試作した回路は 2009 年 3 月に納入されるため、まだ測定を行なっていない。

レイアウトにおいては、常に面積を念頭に置きながらレイアウトしなければいけない。線対称なレイアウトからコモンセントロイド配置のレイアウトにすると面積がどの程度大きくなるかを見る。

図 3.6.10 は、線対称なレイアウトとコモンセントロイド配置におけるレイアウトである。線対称な配置からコモンセントロイド配置にすることで面積は、7.4 mm² から 15.6 mm² になり、面積は 2 倍程度大きくなった。

図 3.6.10 F/F OTA の線対称なレイアウトとコモンセントロイド配置のレイアウトにおける面積の違い
3.7 3章のまとめ

全差動 F/F+F/B OTA をベースに多相交流回路に用いる事が出来る増幅器を提案した。3 相方式である3相 F/F+F/B OTA と4相方式である4相 F/F+F/B OTA を比較した。4相方式は対称座標法によって对称成分に分解すると3相方式にはない、無名相成分が表れる。この成分は、存在しているはずであったがほとんど議論がなされていなかった。そこで RCPF にこの無名相成分を入力して特性の変化を見た。すると高いイメージリジェクションを持つ RCPF に大きな影響を与えている事が判った。(IRR が −71 dB から −50 dB に恶化した)。しかし4相方式において、この無名相成分を除去しようとするとインパータが12個新たに必要になり、消費電流の削減、回路面積の縮小の大きな妨げになってしまいます。3相方式においては、この成分が存在しないためハードの追加なく用いる事が出来る。シミュレーションによ り 3 相 F/F+F/B OTA と 4 相 F/F+F/B OTA を比較すると、インパータの数が少ない分、3相 F/F+F/B OTA が4相 F/F+F/B OTA に対して 3/4 の消費電流ですむ。以上から3相方式と4相方式を比較すると3相方式の方が有利ということを明らかにした。

3相 F/F+F/B OTA に使っている MOS が製造ばらつきによって零相利得にどのような影響を与えるかを見た。零相利得はチューニングによって −64.47 dB まで抑圧されていたが MOS がばらつき、平均で −11 dB 程度になってしまう結果を得た。零相利得の抑圧を悪化させて いる原因が Mismatch ばらつきであることがわかった。そこでばらつきに強くするため MOS のアスペクト比を一定にしたままサイズだけを大きくした。0 dB 以上になると割合は余り改善がされなかったが、平均値は下げることが出来た。

零相利得の悪化の一因の原因である Mismatch ばらつきはレイアウトの工夫で抑圧することが出来る。コンセントロイド配置が線対称な配置と比べてどの程度有効なのかを調べるため に全差動 F/F OTA で線対称な配置とコンセントロイド配置で試作を行なった。この試作結 果で零相利得を抑圧する効果が確認されれば、全差動 F/F OTA には、コンセントロイド配 置が必須となるだろう。しかし、3相より多い回路の場合必ずしもコンセントロイド配置がよいとは言えないかもしれない。それは配線が複雑になってしまうからである。またコンセントロイド配置は素子数が大幅に増えてしまい、回路面積が大きくなる。もし3相増幅器を コンセントロイド配置を用いてレイアウトするならば事前によく配置と配線を考える必要があ る。

なお試作 IC は本論文執筆時において製造中であり、2009年3月に納入される予定であるた めまだ測定は行なっていない。

測定を行なって、コンセントロイド配置がMismatch ばらつきを抑圧して同相利得を低く
抑える効果があるなら，サイズの大きな MOS をつかった，かつコモンセントロイド配置を採用すれば，よりばらつきによる同相利得の抑圧効果を高められるだろう．

全差動 F/F OTA における同相利得のチューニングを "1 "倍回路にあるインバータ 3 筒所においてサイズ調整を行い，同相利得の変化があるかどうかを見た．今までは，−1 倍回路の入出力を短絡したインバータでのみ調整を行なうものでしか検討がなされていなかったからである．

どのインバータのサイズを調整しても結果に変化がない．これは L と W のばらつきでは，−1 倍回路の利得の変動が常に一定であるため −1 倍回路の利得の変動がないからである．

後に 3 相 F/F+F/B OTA の応用として，3 相 Tow-Thomas 複素バイカッドフィルタのアンプに適用した．増幅器に従来の差動対を用いた OPA ではなく CMOS インバータを用いた OPA で電源電圧 1V にして動作させた．結果としては，理想アンプと比較して，よく一致しており提案回路で低電圧で動作が可能なことを示した．ただし電源電圧を 1V で動作させため，位相余裕が 23° と少なくなった．今後の課題は，3 相アンプにおける位相補償を検討しなければいけない．
第4章
結論

第2章では，RCPFを90°移相器として扱った場合と，RCPFをイメージ圧圧フィルタとして扱った場合の出力の誤差を伝達関数からの解析とシミュレーションから求めた。90°移相器として扱った場合，出力の誤差を正相成分と逆相成分に対応する伝達関数の重ね合わせによって解析した結果，RCPFの入力の上からV, 0, -V, 0と入力する方法Aは通過域の位相が厳密に90°となる。しかし通過域の振幅比は1を中心に振動する。RCPFの入力の上からV, V, -V, -Vと入力する方法Bに関しては，通過域の振幅比は厳密に1となる。しかし位相差は90°のあたりで振動することがわかった。これらはシミュレーションによっても確かめられた。

以上から出力の位相がより90°に近いものが要求される場合は，方法Aを選択する。対して出力の振幅がより1に近いものが要求される場合は，方法Bを選択すれば良いことが明らかになった。

3相交流信号を発生させる手法として差動信号からRCPFで4相信号を発生させ，その出力を補間回路によって3相信号にする方法を用いるなら，その精度は前段のRCPFにより依存するので，この選択が重要になる。3相信号の位相差がより120°に近いものが必要なら方法Aを選ぶべきである。

興味深いのは，シミュレーションによって通過域の誤差を見たとき，特性に特徴がある事がわかった。RCPFが等リプル設計の場合，方法Aでは，位相誤差が0となるが振幅比は等リプル状になることである。また方法Bの場合，振幅比が1となるが，位相誤差は等リプル状に変化することである。このことから言える事は，等リプル設計時において誤差も等リプルになるということである。この理由を調べることが今後の課題である。

RCPFをフィルタとして扱う場合は，4相交流信号を用いる。4相交流信号が非対称になった場合でも対称座標法により必ず各対称成分に分解される。信号成分として必要なのは，正相
成分と逆相成分であるので，零相成分と無名相成分は不要になる．零相成分は OPA あるいは，F/F OTA であれば零相成分の抑圧ができているので RCPF に入力される零相成分は，ごくわずかである．さらにシミュレーションで RCPF に零相成分を入力してもほとんど影響がないことを確かめている．従ってもう１つの不要な成分である無名相成分に着目した．

1% の無名相成分と正相 (逆相) 成分を RCPF に入力すると，IRR が少ない RCPF に影響がほとんどないことがわかった．しかし IRR が高い RCPF は 1% の無名相成分でも IRR が −71 dB から −52 dB と約 20 dB 悪くなった事をシミュレーションから確認した．

1% の無名相成分と正相成分を RCPF に入力した時の RCPF の出力を無名相成分の伝達関数と正相成分の伝達関数の重ね合わせによって解析した．無名相成分の伝達関数をみてみると入力したものがそのまま出力に表れることがわかった．従って，1% の無名相成分を入力すると出力で −40 dB のほぼフラットな周波数特性が得られる．その結果，正相成分に対する周波数特性が無名相成分に対する周波数特性に変わって IRR を悪化させてしまうことがわかった．また零相成分においても解析結果から IRR が −40 dB 以上であれば無名相成分と同様に悪化することが予想される．

1% の無名相入力あるいは零相入力であれば，IRR が −40 dB より少なければ IRR に影響がないことが，この結果からわかる．

以上から，4 相信号を扱う上で高 IRR の信号処理では，無名相成分と零相成分をできるだけ抑圧しなければいけない事が明らかになった．

第 3 章では，我々の研究室が提案した全差動 F/F+F/B OTA を 3 相信号で扱える増幅器に拡張した．従来の 4 相信号処理で扱えるアンプを平均操作を行うノードをつなげることにより拡張できる．3 相方式における F/F+F/B OTA と 4 相方式における F/F+F/B OTA を比較し，違いを明らかにした．第 2 章で述べたように，3 相方式と 4 相方式は対称成分の数に違いがある．

3 相方式における零相成分と 4 相方式における零相成分は全差動 F/F+F/B OTA の同相成分にあたる．そのため零相成分は抑圧されている．しかし 4 相方式においては，不要な成分の無名相成分が残っている．無名相成分を抑圧することを考えると，新たにインパータが 12 個必要になってしまう．これは消費電流の削減，回路面積の削減の観点から大きな問題となる．

3 相方式は，不要な成分が零相成分しかないと，しかも零相成分はすでに抑圧されているので，このまま 3 相方式における増幅器として用いる事が出来る．シミュレーションによって，3 相方式のアンプと 4 相方式のアンプの違いは無名相成分に対する利得と消費電流のみであった．実際に設計した 3 相 F/F+F/B OTA と 4 相 F/F+F/B OTA のシミュレーションから求めた特性を見ると，3 相 F/F+F/B OTA は 4 相 F/F+F/B OTA に対して消費電流が 3/4 になる事を確認した．アンプだけを考えた場合，確かに消費電流は少なくすることが出来る．しかしデジタル回
路まで含めた受信機としての全体の特性については検証されていない。今後、3相方式と4相方式を比較する場合、受信機全体のアーキテクチャとして3相方式と4相方式のどちらかが有利かを検討しなければいけない。

3相 Tow-Thomas 複素バイカットフィルタに用いる増幅器に、提案した3相 F/F+F/B OTAを適用した。[10]にあたる3相 Tow-Thomas 複素バイカットフィルタは、増幅器に差動増幅器であるOPAを用いていた。OPAは背景で述べたように、電源電圧が1Vでの動作が困難である。[10]にする3相 Tow-Thomas 複素バイカットフィルタに用いる増幅器の電源電圧は1.8Vである。増幅器は3相 F/F+F/B OTAを用い、電源電圧を1Vで動作させ3相 Tow-Thomas 複素バイカットフィルタの動作を確認した。

1Vの電源電圧でも、理想アンプを用いた時の特性を比べてほぼ同じ特性が得られた。しかし用いている3相 F/F+F/B OTAの位相余裕が23°と十分ではなかった。同じ構成で、1.8Vで動作させると位相余裕が60°取れる。今後の課題として、1Vで動作させたときの位相補償を検討し、位相余裕が60°取れるように改善することが挙げられる。

全差動F/F OTAにおける同相利得のチューニングの検討を行ない、モンテカルロ解析によって出力の同相利得の影響を見た。今までは、−1倍回路の出力力を短絡したインパータのみサイズ調整を行なっていた。しかしサイズ調整における同相利得は、−1倍回路の利得が完全に−1になっていないから倍1倍で出力されていた。従って、−1倍回路の利得を−1倍にしさえすればよい事から、インパータのサイズ調整の箇所を、−1倍回路の3つのインパータのどれで変えることができると考えられる。複数の箇所でインパータのサイズ調整を行い、モンテカルロ解析によって出力の同相利得を見た。

インパータがばらついた時に同相利得が抑制されない主な原因としてインパータが個別にばらつくMismatchが考えられる。

まず同相利得の抑制をインパータのばらつきによる影響を少なくするために、アスペクト比一定のままMOSのサイズだけを大きくした。結果、平均値を下げる事は出来たが0dB以上の割合は少ししか改善できなかった。

さらに同相利得を改善するために、コモンセントロイド配置によってプロセスの勾配を相殺することを考えた。コモンセントロイド配置が、同相利得の改善に繋がっているかどうかを判断するために、比較対象として1つ線対称な配置をレイアウトした。

平均型F/F OTA（線対称、コモンセントロイド）、加算型F/F OTA（線対称、コモンセントロイド）計4つの回路を試作した。なおこの試作回路は、2009年3月に納入されるためまだ測定は、行なわれていない。測定によって、コモンセントロイド配置が有効であるとならばF/F OTAにおけるレイアウトはコモンセントロイド配置が必須になるだろう。
謝辞

本研究を行うにあたり、御指導、御助言いただいた谷谷本洋教授に深く感謝します。また、IC 試作にあたって CAD 環境の整備、御指導、御助言頂いた柳沢英人助教、そして M2 の白取秀俊氏、田中敦嗣氏、M1 の川部謙二氏、高橋大輔氏、矢澤和樹氏並びに、同研究室の学部生の方々に深くお礼を申し上げます。

本論文の査読にあたり、それぞれご専門の立場から、貴重な意見を賜った田村淳二教授、熊耳浩雄教授に御礼申し上げます。第 1 回 IC の試作において北見工業大学、学長裁量経費において試作の機会を与えていただいたことに感謝いたします。

また第 2 回 IC 試作では、試作作成いただいた株式会社ルネサステクノロジに感謝いたします。回路試作を行なうにあたり、有益な意見、ご指摘を頂いた同社の奥野氏、有本氏、原口氏に感謝いたします。

共同研究では、貴重な議論、ご意見そしてご援助を賜った株式会社東芝の山路隆文氏に感謝いたします。またモンテカルロ解析について貴重なご意見を賜った株式会社東芝の藤本竜一氏に、感謝いたします。

RCPF を設計にするあたり高周波用チップコンデンサを提供してくださった、村田製作所の福辺健次氏に感謝いたします。

本研究の一部は東京大学大規模集積システム設計教育研究センター（VDEC）を通し、日本ケイデンス株式会社の協力のもとで行われたものである。ここに記して感謝します。
参考文献

[12] 矢舎誠, 吉田英一, 谷本洋, □ CMOS インバータを用いたアクティブ RC ボリフェーズフィ
ルタの設計, 電気学会電子回路研究会電子回路研究会資料, ECT-06-16, 2006.

[14] Kong-Pang Pun, José Epifâ da Franca and Carlos Azeredo-Leme, CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS Improved Techniques for Image Rejection in Wideband Quadrature Receivers, Chapter 3 KLUWER ACADEMIC PUBLISHERS 2003

[16] 別宮貞俊,「対称座標法解説」, 第十五章 四相式変換機, オーム社, 昭和 3 年．

[17] 小森山恵士, 矢澤和樹, 谷本洋, 0.18 μmCMOS インバータを用いた低電圧全差動 OTA の設計・評価 電気・情報関係学会北海道支部連合大会講演論文集, Vol.2008, 論文 No.42, 2008 年 10 月

[20] 遠藤勇太, 3 テールセル回路を用いた 2 乗回路及び, ミクサ回路の設計と試作 北見工業大学大学院修士論文, 2007 年 3 月

[21] 長谷川勝也, 確立・統計のしくみがわかる本, 株式会社技術評論者, 平成 12 年
付録 A

付録

A.1 RCPF の測定

2008 年の IC 試作で RCPF を設計、試作した。その IC 試作前に、チップ抵抗とチップコンデンサを用いて試作回路を作成、測定し IC で作る試作回路を測定できるかのほどかを検討した。

図 A.1.1 設計した RCPF の TEG
等リプル設計における RCPF の素子値は係数マッチング法によって決定される [19]。設計した RCPF は、3 段であり、通過域 1.95 GHz で素子値を求めた。通過域の周波数が 1.95 GHz に決めたのは、第 3 世代の携帯電話に搭載される移相器あるいはフィルタを考えたからである。また帯域は狭帯域にしてイメージリジェクションを大きくとった。図 A.1.1 は RCPF とその素子値を記載した。図 A.1.1 に記載している素子値はインピーダンススケーリングによって 3 段分の直列抵抗が 50Ω になるようにしたものである。3 段の抵抗値の合計を 50Ω にしたのは、ネットワークアナライザ (NWA) で測定できるようになるため（ネットワークアナライザの内部インピーダンスが 50Ω のため）である。RCPF の抵抗値が大きすぎると、入力部分で信号が RCPF に入っているか否か反射してしまう恐れがある。従ってまず RCPF の抵抗値を 50Ω にしたときの反射係数を求めた。シミュレーションによる S パラメータ S11 と S22 は −2 dB である。従って反射が多いものの、ネットワークアナライザでの測定は出来ると考えられる。

図 A.1.2 が設計した回路で、図 A.1.3 が設計回路で採用した抵抗とコンデンサの配置である。図 A.1.3 にある回転対称な配置を採用したのは、この配置を行なうことで抵抗と容量の間の配線長を短くすることができ、また配線間の寄生を出来るだけ少なくしたかったので、素子間の距離を短くして、出来るだけ配線を短くした。

図 A.1.2 設計した RCPF の写真

図 A.1.2 が設計した回路で、図 A.1.3 が設計回路で採用した抵抗とコンデンサの配置である。図 A.1.3 にある回転対称な配置を採用したのは、この配置を行なうことで抵抗と容量の間の配線長を短くすることができるからである。また配線間の寄生を出来るだけ少なくしたかったので、素子間の距離を短くして、出来るだけ配線を短くした。
A.2 測定結果

図 A.2.1 が RCPF 測定した結果である。実線がシミュレーション結果、ブロットである。線が実測値である。測定結果から、80 MHz 付近にピークが見られる。このピークは、出力側に接続しているバランが影響していると考えられる。そこで出力側のバランを取り外して、スペクトラムアナライザによって 80 MHz 付近を見てみたところピークは出なかった。従ってバランによるインダクタ L と寄生による C で 80 MHz 付近に共振点を持たないと考えられる。1 MHz あたりの利得が 15 dB ほどシミュレーション結果と異なっている。実測値とシミュレーション結果の違いは、サスペクション方法が問題がある可能性がある。試作で用いたバランは巻き数比 1:2 のバランであるのに対し、TSMC 支給の理想トランスは巻き数比 1:1 のものしかなかったので、そのためトランスを用いて電圧源を 2 V にしシミュレーションを行なった。従ってシミュレーション方法について検討する必要がある。

もう 1 つ RCPF の特性がうまく測定できない原因にコンデンサの問題がある。それは使用しているチップコンデンサが通過域 (10 MHz 付近) で本当にコンデンサに見えているかというところである。コンデンサは一般的に周波数があがるとある点でインダクタに見えてしまう。従って、C をつけていたつもりでも L に見えている可能性がある。

使用したチップコンデンサをインピーダンスアナライザで測定してみると、値が大きい
チップコンデンサにおいては，10 MHz で L に見えていた．そこで村田製作所から高周波用のチップコンデンサを提供してもらい新たに RCPF を作り直すことを考えた．しかしプリント基板試作が進まなかった事と IC 試作の期限があり，これ以上進めることが出来なかった．

以降 RCPF を引き継ぐ方は，まず高周波用チップコンデンサを測定してもらい通過帯域までコンデンサとして見えていているかをみてもらいたい．それから RCPF を設計して，測定してもらいたい．さらに RCPF の入出力にバランを入れたことによる測定法を検討する必要がある．

今まで，我々の研究室で行なっていた NWA による 4 ポート測定では，うまく測定できなかった可能性がある．
以降は，高周波回路の基本的なことだが著者が設計に携わって身にしめて感じたことを書いておく．これから RCPF を設計する人は参考にしてもらいたい．

・高周波回路設計のポイント

1. 基板は必ずペタアース基板を使用する．
 （グランド間で電位差が生じないようにするため）

2. アースは確実に接着する．
 （芋半田にならぬよう確実につけるべき）

3. 配線間の距離は極力短くする．
 （RCPF の場合，短くすることと配線間の距離を合わせることが重要）

4. 回路の周りは全てアースにする．
 (ノイズの影響を少なくするため)

5. チップコンデンサは熱に注意
 （熱を加えすぎるとコンデンサの特性が変化してしまう）
A.3 RCPF の設計と試作

2007 年の IC 試作で、90° 移相器が試作されている [20]. この移相器を測定してみると、1 相だけ 50° ずれて出てくる結果を得た。出力の 1 つだけがずれて出てくるのは、原因が考えにくい。RCPF はそれぞれの経路で互いに作用しあって、位相差が 90° で出力されるため一つの経路がおかしいとその両側の特性も悪化するはずだからである。2007 年試作の

![図 A.3.1 遠藤氏が設計した RCPF の TEG](image)

RCPF は、測定するためにネットワークアナライザ (NWA) を出力に接続することを前提に RCPF の TEG を設計している。

従って遠藤氏が設計した RCPF(図 A.3.1) は出力にバランが接続されている。この NMOS バッファにより出力インピーダンスが 50 Ω に見える。

しかし出来るだけ RCPF 単体の特性を取るためにバッファはつけない回路を考えた。そのため RCPF のインピーダンスを下げることを検討しなければいけない。RCPF の特性を変えないでインピーダンスを下げることは、インピーダンススケーリングによって簡単に現実できる。しかし RCPF の特性は R と C の時定数で決まっているので R を小さくすれば、C が大きくなってしまう。積算を考えるなら、あまり大きな C にならないように注意しなければいけない。図 A.3.1 が遠藤氏が設計した RCPF の TEG であり、図 A.3.2 が 2008 年に IC で試作した RCPF の TEG である。変更した点は、出力にもバランを入れ差動信号で入力して差動出力で見るようにした事である。また入力にバランを 2 つ入れることで RCPF をフィルタとして使うか、RCPF を 90° 移相器として使うかを、使い分ける事が出来る。

図 A.3.2 はバランの等価回路である。バランは巻数比 1 : 2 のトランスである。図 A.3.2(a)
より巻数比 1:2 によって入力側の電圧 (端子 1-2 と端子 1-3) と電流は出力側でそれぞれ 2 倍と 1/2 になる。出力側から見たインピーダンスは図 A.3.2(b) のように片側 2Rs、で 4Rs になる。従って図 A.3.3 でバランとバランの後の回路でインピーダンスマッチングをとるには、4Rs を並列につなげればよい。しかし本試作における RCPF は抵抗の合計が 50Ω に設定していて、完全にインピーダンスマッチングを取っていなくても測定できると考えられる。実際にチップコンデンサとチップ抵抗を用いて図 A.3.2 の構成で測定できるかどうかを判断するために S パラメータを測定してみた。すると反射を表す S11 は -20 dB と十分測定できる水準である。従って本試作においては、バランの後に抵抗を入れなかった。
図 A.3.3 試作した RCPF の TEG

図 A.3.4 シミュレーションに用いた回路と各素子の素子値

素子値

\[R_1 = 6.378055 \, [\Omega] \]
\[R_2 = 13.79312 \, [\Omega] \]
\[R_3 = 29.82883 \, [\Omega] \]
\[C_1 = 3.399782 \, [\text{nF}] \]
\[C_2 = 1.249848 \, [\text{nF}] \]
\[C_3 = 459.5209 \, [\text{pF}] \]
図 A.3.5 測定系を入れた RCPF の周波数特性と寄生を抽出した周波数特性

図 A.3.6 R と C それぞれ別に寄生を抽出したときの RCPF の周波数特性 (負の周波数特性のみ)
図 A.1.3 と図 A.3.9 はそれぞれ採用した回転対称なレイアウトと 3 段 RCPF のレイアウトである。回転対称なレイアウトを用いたのは、RCPF の各段で配線の長さを均等に揃えるためである。本試作における RCPF は、約 2 GHz 帯を使用している。約 2 GHz 帯の周波数は波長が 15 cm であり、2 GHz の信号が 1° ずれる配線長は 417 μm である。しかし抵抗のインピーダンスを下げた分、容量が大きくならず、初軸では 417 μm を大きく超えてしまった。従って、出力で 2° 程度ずれてしまうレイアウトにしてしまった。精度のよい 90° 移相器を考えたなら素子値はレイアウトの配線長も考慮に入れて決定しなくてはいけない。

図 A.3.5 は RCPF の周波数特性である。実線で表された線が寄生抽出なしの周波数特性である。破線で示しているのは寄生抽出したときの周波数特性である。結果を見てみると、寄生抽出によって明らかに望んだ特性が得られていないことがわかる。本来 3 つあるはずであるノッチが、消えてしまって 1 つしか確認できない。そこでノッチが消えてしまった原因を追究することにした。

寄生抽出は RC 両方で行なった。どちらの寄生抽出で特性が悪化したかを特定するために、寄生容量と寄生抵抗それぞれ個別に抽出して特性を見てみた。

$ R $ と $ C $ の両方で寄生を抽出した図 A.3.5 より、特性が変化していることが明らかになったので、測定系は入れないと RCPF 単体でシミュレーションを行ない、さらに寄生は $ R $ と $ C $ 個別に抽出した。その結果が図 A.3.6 である。$ C $ のみの寄生抽出の場合、ほとんど特性が変わらないのに対し、$ R $ を寄生抽出すると大きく特性が変わってきている。これは抵抗のインピーダンスを 3 つで 50Ω にしてしまうかすると考えられる。RCPF の最終段の抵抗値はわずか 60Ω ほどであるから数Ω ついただけで大きく特性は変わってしまう。しかし 3 つのノッチのうち 2 つがなくなってしまった原因を調べる必要がある。シミュレーションによりノッチがなくなってしまう原因を調べた。

図 A.3.7 はノッチが消える原因となる寄生抵抗である。図 A.3.7 のように容量に直列抵抗が寄生したときの RCPF 相分の F 行列を第 2 章と同様に求めると、

$$
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} = \frac{1}{1 + sC(r + j s CR)} \begin{bmatrix}
1 + sC(R + r) & R(1 + sCr) \\
2sC & 1 + sC(R + r)
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
$$

(A.3.1)

このとき、$ r $ は寄生抵抗である。よって電圧伝達関数 $ H_{para}(s) $ は、

$$
H_{para}(s) = \frac{V_2}{V_1} = \frac{sC r + 1 - js CR}{1 + sC(R + r)}
$$

(A.3.2)

となる。

図 A.3.8 は、求めた式 (A.3.2) を元に寄生抵抗 $ r $ がついたときの零点と極が移動する様子を示した図である。本来周波数を負の方向に移動させると、零点の上を通過して利得が
図 A.3.7 ノッチが消える原因となる寄生抵抗

図 A.3.8 寄生抵抗が発生したときの s 平面の零点と極の様子

図 A.3.9 が 2008 年に試作した RCPF の写真である．インピーダンススケーリングによって抵抗の値を小さくしたため，その分容量が大きくなった．全体の面積はほとんど容量になってしまった．図 A.3.10 が全体のチップ写真である．この写真からも容量が大きいことがわかる．従って常識的に集積化できる容量は，数 pF のオーダーとなる事に注意しなければいけない．
図 A.3.9 試作した RCPF のレイアウト
図 A.3.10 チップ全体のレイアウト
付録 B

付録

B.1 モンテカルロ解析の回数に対する検討

本稿において複数モンテカルロ解析を使用する場面があったので，モンテカルロ解析の回数に対する検討を行なった。
モンテカルロ解析は回数によって大きく結果が異なる．そのため回数を何回に設定すれば正しい結果が得られるかが問題になる．回数の検証に用いるのはRCPFのモンテカルロ解析を用いた。
統計的に回数を何回に設定するかを決めるために，最初に母平均値の差の検定を用いる考えたが，母平均の差の検定 [21] は母集団 A，B から来る母平均が，ある母集団からきていると言うことを確かめるための検定であるため，モンテカルロ解析の回数に対する結論は言えない。
そこで分散に対する検定 [21] を行なう．分散は，

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \quad (B.1.1)$$

で与えられ，式 (B.1.1) は回数 n に関係してくる．そのためモンテカルロ解析の回数に対する結果を統計的に得たいのなら分散の検定を用いる必要がある．分散の検定を行う前にいくつか定義を知らないといけないので，ここで書く。
いずれも平均 μ，分散 σ の同一の正規分布に従う互いに独立な確立変数を X_1, X_2, ..., X_n とする．このとき次の統計量は自由度 n-1 の χ^2 分布に従う：

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} \quad (B.1.2)$$
この定義を使って、F分布により分散比の検定を行なう。分散比の検定はある 2 つの母分散を \(\sigma_1^2, \sigma_2^2 \) とするとき 2 つの母分散が等しいかどうかを検討するものである。
F 分布は 2 つの互いに独立な確率変数 \(X, Y \) がそれぞれ自由度 \(m, n \) の \(\chi^2 \) 分布に従うのなら、それぞれの確率変数を自由度で割った値の比は,

\[
F = \frac{X}{\frac{m}{n}}
\]

となり、式 (B.1.3) は自由度 \((m, n)\) の F 分布に従う。
実際に検定の例を挙げる。Pspice の「Random Seed」を変えてモンテカルロ解析 (10000 回) から得た母分散 \(\sigma_1^2 \) と別の Random Seed で行なったモンテカルロ解析 (10000 回) から得た母分散 \(\sigma_2^2 \) を用意する。Random Seed を変えれば回数が同じでも違う結果を得ることができる。検定を行う際、帰無仮説: \(H_0 \) と対立仮説: \(H_1 \) を立てる必要がある。帰無仮説は実際に起こってほしくない結果に設定し、それに対し対立仮説はおこってほしい結果に設定する。
ここで帰無仮説 \(H_0 \)，対立仮説 \(H_1 \) を次のように設定する。

\[
H_0: \sigma_1^2 = \sigma_2^2 \quad (B.1.4) \\
H_1: \sigma_1^2 \neq \sigma_2^2 \quad (B.1.5)
\]

もし帰無仮説を棄却しなければそのまま帰無仮説を採択し、帰無仮説を棄却すれば対立仮説を採択する。実際に母分散 \(\sigma_1^2, \sigma_2^2 \) から計算された標本標準偏差をそれぞれ \(S_1, S_2 \)、標準分散は \(S_1^2, S_2^2 \) とすると,

\[
S_1 = 0.7109 \\
S_2 = 0.7099
\]

式 (B.1.3) より F の実現値 \(F^* \) は,

\[
F^* = \frac{S_1^2}{S_2^2} = 1.0028
\]

この \(F^* \) は自由度 \((n_1 - 1, n_2 - 1)\) の F 分布に従う。この実現値 \(F^* \) を使ってこの値が妥当であるかを検証するために境界線 (有意水準) を設ける。これは求められた実現値が同じ分布からきているのかあるいは違うのかを判断するためである。有意水準 5 パーセントというのは 20 回に 1 回間違える頻度である。F 分布に従う有意水準 5 パーセントの範囲の外なら帰無仮説を有意水準 5 パーセントで棄却し対立仮説を採択する。有意水準 5 パーセントの範囲の中なら帰無仮説を採択する。両側検定の有意水準 5 パーセント点は Microsoft
社の EXCEL の FINV(m, n) 関数で求めることができる。m, n はそれぞれの標本数（= 自由度（標本数 -1））を表している。自由度 10000 の 5 パーセント点は下側 0.961555，上側 1.039982 である。

図 B.1.1 自由度 (n₁ - 1, n₂ - 1) の F 分布と 5 パーセント点

図 B.1.1 には値を入れて表示しているが，図 B.1.1 は模式図であり，実際の自由度 (9999, 9999) の F 分布は図 B.1.1 とは異なるので注意されたい。

求めた実現値 F* は 5 パーセント点の内にあるので帰無仮説が採択され，対立仮説が棄却される。つまり 2 つの母分散は等しいということがいえ，モンテカルロ解析の回数が 10000 回という設定から計算される 2 つの標準偏差は等しいということが言える。次に回数が何回までなら正しい結果が得られるかを検証する。なお複数の試行のうち，標準偏差の開きが一番大きいもの同士を用いた。

B.2 10000 回と 1000 回の分散比の検定

帰無仮説と対立仮説は，

\[H_0 : \sigma_1^2 = \sigma_2^2 \] \hspace{1cm} (B.2.1)
\[H_1 : \sigma_1^2 \neq \sigma_2^2 \] \hspace{1cm} (B.2.2)

今までにしてきた計算と同様に標準偏差 S₁, S₂ と分散 S₁², S₂² は

\[S_1 = 0.7109 \quad S_1^2 = 0.5054 \]
\[S_2 = 0.6741 \quad S_2^2 = 0.4544 \]
式 (B.1.6) より実現値 F^* は

$$ F^* = \frac{S_1^2}{S_2^2} = 1.1122 $$ \hspace{0.5cm} (B.2.3)

F 分布の自由度 (9999, 999) の両側 5 パーセント点は (0.9104, 1.098) である。この結果より実現値 F^* は 5 パーセント点の外側にあることから帰無仮説が棄却され、対立仮説が採択される。従って，10000 回と 1000 回それぞれから求められる標準偏差は等しくないといえる。

B.2.1 1000 回と 1000 回の分散比の検定

帰無仮説と対立仮説は，

$$ H_0 : \sigma_1^2 = \sigma_2^2 $$ \hspace{0.5cm} (B.2.4)

$$ H_1 : \sigma_1^2 \neq \sigma_2^2 $$ \hspace{0.5cm} (B.2.5)

標準偏差 S_1, S_2 と分散 S_1^2, S_2^2 は

$$ S_1 = 0.7199 \quad S_1^2 = 0.5183 $$

$$ S_2 = 0.6741 \quad S_2^2 = 0.4544 $$

式 (B.1.6) より実現値 F^* は

$$ F^* = \frac{S_1^2}{S_2^2} = 1.1406 $$ \hspace{0.5cm} (B.2.6)

F 分布の自由度 (9999, 9999) の両側 5 パーセント点は (0.8833, 1.1321) である。従って実現値 F^* より，有意水準 5 パーセントで対立仮説が採択される。この結果からは，1000回同士の標準偏差も等しくないとされる。以上より RCPF のモンテカルロ解析による出力は，10000 回あれば十分な数が統計学的観点から見ることが出来る。

本論文では，RCPF のほかに F/F OTA のインバータの L と W のサイズがばらついた時のモンテカルロ解析を行なっている。

ここでは，試行回数を 1000 回とされている。これは，初め母分散の検定結果により 10000 回以上でモンテカルロ解析を行なったほうがよいと思われ，Cadence 社の Spectre を使用して 10000 回のモンテカルロ解析を行なった。しかし 10000 回をプロットするところで思われるのか時間がかかり（3 日以上放置しても出力されなかった），2000 回と 1000 回そして 500 回を検証し，標準偏差がほとんど変わらないのを確認したうえで 1000 回と定めた。

- 88 -
著者の研究発表リスト

3. 桑原 浩一, 谷本 洋, 山路隆文,CMOS インパータを用いた多相回路用 OTA の検討, 電気学会 電子回路研究会, ECT-08-088, 2008 年 11 月